DESIGN ABSTRACTIONS FOR FROTOCOL SOFTWARE

Faul Taylor, VK3ERLY
F.0. Box 118
E | tham » 3095
Victoria
Australia

Abstract

As amateur packet radia software
becomes more comp | icated and software
deve loment env i ronments i mprover the use
of highlevel languages will become more
favourable. A design approach for
protocol software basedo n modules 2and
Finite State Machines is describedswhich
formalises the interfaceto I0 devices:,
and extends the use of the protocol ’s
State Machine mode | into the
implementation stade. Its adort i on shou | d
m3k.eimplementations of Level 2 and 3
protocols auicker: easier and more
understandable.

Introduction

Traditionally» communicat ion software
for mMiICroProcessors wW3as Wri tten in the
native assembly langusgerfor two reasons;
t he simple microprocessor 3architectures
| imitedthe code complexityr size and
speed, and the environment needed for
software deve lorpment at @ h igher level was
not available. The wearly Term i n3 | Node
Control lers were imp lemented under these
restrictions.

The first obdection 1is no londger
valid. The explosion of the personal
computer has made significant processing

power chear and readily availabler and
many of these machines canbewusedf or
both software development and 3s 3

ded i cated or shared host.

Secondly» software tools and
environments havegrown into3 rich and
Plentiful arenat o develor softwarein.
Compilers, interpreter9 simulations,
grarhics» databases and communications
softwareo f surprising complexity and
usefulness are now avai labile for even the
simplest of microprocessors.

Frotoco | sof tware develorers should
cons i der adopting high level languadges
(such 3s Fascal and C) for their

communicationssystems. The advantadges of
expressing softwarein 3 structured, high
level languadge are well known (see any
Software Engineering text).

igh fevel landguade has been
chosen r some important desidgn

con5iderations must be faced. The

features o f the chosen landuadge must be
exploited to improve the software design,

implementation and maintenance. FPut more

generallysrt h e problem may be wor ded as

3 Aauestion’ how should3communications

program be designed? A design aperoach

which answers this question wil |l be
discussed.

Once ah

lata Abstract i an

Al I software for driving devices (ie.
ports) shauld be modularised. High level
landuages offer mechanisms for success i ve
abstraction or modularisation,usuallygin
the form of procedures/ functions or
subroutines. A design approachenforces
the Jecompos it i on of sof tware i nto modu | es
in adiscipline4 way.

Modularisation al lows for the
implementationofwe!ll defined interfaces
to entire functionally~inderendent
components of 3 software system. Amodule
(within s rprodgram) is one or more

sub-prodgrams which Perform 3 specified
tashk on some d3t3. The module
encapsu | ates both the data obdectr 3nd
the sub-pPrograms wh ich man i Pulatei t,. All

aspectso f the module are compP ietely
defined by the PTOgSrammer in an
approprriate notation.

Def initionof 3Module

dr3wn from eacket
radio software is shownbel ow. Modules
are def i ned for 3 serial port (ie. 3
UART) » and 8 "packet_port” (ie. the
software interface to 3 protocol
control lerchip),

An example

These definitions are presentedin
a Fascal-like p5eudocOder & form which
has been successfullyusedbyt h e 3uthor.
The purpose of the no-tat ion is to convey
semantic specificationy rather than
syntactic detail.

175

serial_rort:
{global data3
redisters:
bedgin
TXbwffr» RXbuffr DivisorLSB»
DivisorMSE, Intrept, LineControl:
L ineStat, ModemControl »
ModemStat :UART. .Register;
end
{orerators 3}
procedure initial ise;
procedure send.char (chichar) ;
function <char_receivediboolesan;’
function get_rece i ved,char ichar i
end {serial_rortl;

packet_rPort:
(global datal
tuffersiarraylli..nl o f
redisters:
bedin
TXbuff,» RXbuff, Intret, LineControl.
L i neStat » ModemControl, ModemStat
tProtocol _Control ler_Register;
end
{operators 3}
procedure initi3lise;
procedure send._frame(b:buffer);
procedure | isten (b:buffer) ;
function frame_receivedibooleani
procedure dget_received_frame(
var bibuffer) ;

buffer_tyre;

end {packet._rortl;

Once the module (port interface) has
been specified 35 t h e examp les show
imp lementat i on of the module can Proceed
by further ref ining the data obJects: and
by writing the interface procedures or
function code. If necessary » the module
specification can be modified slightly In
the light of implementation
cons i derat i onst but th i s shou Id be avo i ded
since it implies weakness in the original
module specification.

Once implemented, wusindgt h e module
should be a simple case of making calls to
the interface procedures or functions 3s
reauired. Since Ianguages such as Fascal
and C do not support modules explicitly,
it is the programmer’s responsibilityto
enforce correct use of the module In
his or her code »by using the defined
interface5 only. For instance, when using
a8 Packet-port module, there must be no
reading or writing of any of the data
variables, or the port device itself.

The advantages and di sadvan tades of

using this ordganisationo f device
interface software will be discussed
Iater.

176

Control Abstraction

Communication systems are usual |y
“event dr iven”; the software must respond
to asynchronous events: such as an
operator keyed commandror areceived
Packet. Such software must decide on
appropriate process i ng of events on the
basis of the historyror stateof the
system. A form3 | mode | which is
8PP | icable in such systems is the Finite
State Mach i ne.

A Finite State Machine (FSM) consists
of a finite set of states, each of which
knows of a3 set of eventss, and 3 transition
function which mars (stater, event) into
(new-state: action), The action is =
member of 3 set of act ions, wh ich express
interaction or modification of the FSM’s
environment.

FSMs are easily deric ted in
Jiagrammatic form. The states are
represented by circles, transit i ons
between states by directed arcss 3nd
events 3nd action5 by “event facti on”
labels on the transitions. Fart of the

FSM model of AX25 [Fox 843 is presented
in Fidgure 1. |t shows the states which
are passed through when the local station
connects to a remote stat ion.

The fol | ow ing steps take p | ace when a
connection is estab | i shed. Initial lys, our
station is in the “Disconnected” state.
Qur attempt to connect to another station
(by tyring “CONN (callsign>") is
interpreted by the FSM as 3n event, 3nd
classified (el?) The FSM state transit ion
function is invoked, with Parameters
current-state (which is "Il i sconnected”)
and event (which is e19). The function
vields anew state ("L i nk Estab)i shment "),
and an action (send s SABM epacket to
the addressed stat ion). The act ion is
Performed and the system waits, readut o
respond to my of the events wh ich may
occur in the "L ink. Estab | i shment" state.

From this simplified examele, it
should be c fear that 3n FSM model is ideal
for specification, de5i gn and

implementation of 3n event dr i ven system:»
such 3s & Protocol. The advantadges of
adoption of the FSM model are discussed
| ater . The rest of this section describes
some ideas on how FSMs can be imp lemented
i n Fascal,arepresentative high level
| anguade,

DISC:UA

SABM UA

DISC:DM

st

Dis~
connected

CONN : SABM

RNR, RR,REJ, DISC,

I wiith poll:DM D1s¢

DM, UA :

SABM, RNR, RR,REJ,
[with poll:DM

DISC:UA STOP:

Di sconnect
Kequest

54

SABM 35

Intormation
Transter

CONN:
SABM REJ,RR,I
(wiih poll)sRR
STOP:DIX REJ,RR,I
(without poll)

Note: CONN and STOP are operator commands for connecting and
dIsconnecting to the renpte station respectively.
Al.1 other names are AX. 25 frane types.

AX. 25 FSM Voed | i e8 -3 | | e1s | el7 | i el i
EVENT I withi ! SAEM ¢ DI SC | i UA ! DM H i CONN !
y Poll ! teitherieither! ieitherleither! ! cmd i

STATE -~—-==mm e | m————— e ek L B R vt ittt R
1 Disconnected i OM H i UA»SSI DM H i DM i DM H 1 SABM, S22}
2 Link. Setup o= 1 1 UASSSY IMsS1YE 1 -~ b = S
3 Frame Reject i FRMR i UA»SSI UA,SLY - ' . ! {SAEM,S21
4 Disconnect Rast iIIM,S51! i IIMyS1t UA,S1H 1 51 i 51 H 1 SABM, 821
S Information Xferi R R li UA | UA,S11 I Y- H {SAEBM 521

Figure 1. Extract of the AX.25 FSHM,
FSM based Imp | ementat i on of AX. 25 const

Once the FSM mode | of the
protocol is compietely defi ned,
impiementation tecomes strai shtforward and
somewhat, mechanical. The components to be
defined are:

i. the state table;

ii. the state vari 3b | e,
iii. the acti onprocedures:
iv. the FSM procedure:

V. the mazinioor.

Sone exameles of these follow. The
FiniteStateTable (FST) can e3si |y hbe
defined:

S1_Disconnected=1}
S2.LinkEstablishment-2;}

A0 _NoAction=0}
Al_SendSAERM=1;

E1_CONNcmd=1;
E2_DMr eceived=2;
nbr_states =n;
nbr_events =n;
nbr_actions=n;

ture
state_tyre =
S1_Disconnected.. Sn_StateN;
event-type =
E1_CONNcmd. . En_EventN;
action-type =
AO_NoAction..An_ActionN;}

177

var
FST:arraull..nbr_states,
1..nbr_eventsJof
record
newstateistate_tyre;
action iaction-type
end;

The state variable is simply defined:

var current_stateistate_ture;’

event) Pairin the
In Pascals this

Each (newstate,
FST must be initialised.
becomes rather ted i ous:

FSTCS1_ Disconnected,
E1_CONNcmdl.neuwstatei=
S2_LinkEstablishment;
FSTLS1_ Disconnected,
E1._.CONNcmdl. 3ct i on HE
Al_sendSAERM;

FSTLS2_ LinkEstablishment,
E2.IMreceivedl.newstate:=
Sli_Disconnected;
FSTCS2_ LinkEstablishment,
El_DMreceivedl.action :=
AQ_NoAction;

etc

The stse transitionfunction canbe
implementedas 3 simple Pascalfunction:

function FSM(event:ievent._.ture) istate_ture;

{ dlobalst FST, current_state 3}

bedin
case FSTLcurrent_states event], act i on of
A0 _NoAction: {donath ing?l
Al_sendSAEBM i bedg i n sendSABM (» ». ., ») end)
A2_Action2 ¢ bedgin { do Action 2 1} end;

An_ActionN begin { do Action n 2} end;}
end {casel’
FSM =

FSTCcurrent_state, eventl.newstate;

end {FSM2;

The 3ct i on procedures AO_NoAct i on . .

An_Act i OPN tagke careof al | Processing
needed to handle the event. These
Procedures may call other futility’

procedure5 to Jo lower level process ing.

The mainloorpof the Process takes
the fol lowind form:

current-state i=initial-state;
repeat
get-event (event) #
current_state = FSM(event) ;

untilcurrent-state = terminal_state’

178

The procedure "get_event (event) "
mon i tors both th e packet_ports andt h e
key board, for any input which canb e
classified a5 3n event:

procedure get_event (var eventievent_tupe) j
var
kbd_bufferistringll..longest_cmdl;’
frame.buffer:frame;

event != no-event #
repeat
{wait for received frame or tured key
if Key Fressed then
get char
if charis 3 CR then
analyse.cmd(kbd_bufferrevent)
else
arpend chart o khd_buffer
else
if frame_rece i ved then
analyse_frame(frame_bwfferrevent)
unt i | event (> no.event}

The comment "wa it on 3 received frame
or tuped key " refers to animplementation

specific issue. | f both frameeception
and keyboard mon i tar i ng is done by
interrupt handlers, Procedure get-event
shou I'd wunschedule itself at this Point.

In 8nimp lementat ion where interrupts are
not availablesr the procedure cansimply
loop until 3 received frame is detected or
3 key i s pressed.

Experience with Dlesign Abstractions

Exper ience has shown that adopt ion of
these des i ¢n abstract i ons has many more
advantades than disadvantades.

Object-based implementations of
device interface software (such as the
serial.rort or packet_port)offer all the
advantades of modulari ty:

Seecific details of
port device are

i. Abstraction.
the physical
hidden.

ii. A well defined interface. Al |
references to the device g0 through
a8 common i nterface.

iii. Interface definitions can be
application specific. The
definition of the interfaceto the
Port (ie.the 3ccess Procedures) is
entirely up to the prodrammer.

iv, Isolation. Rer | acement orupdgrading
of the physicaldevice ¢anbe done
transparent lyto the rest of the
software.

Jisadvantade is the
Using structure
obJect code

A rossibile
over headof structure.

imroses the need for more

and datarwh i ch mavi n some Cc3seSs result
in stower execution speed. This has not
been 3 prob i em in both RTTY apnd AX.25

software, but mav cause problems at hi sher
baudrates.

The sdvantages o f adoptingthe FSM

model i n i mp i1 ementati on were found to be:
i. Centralisationo f Control. The
entire ’contraol policy’o f the
protocol is described neat | yand

simplyi n 3 sindle table.

[Simplicity., A comp | icated Protocol

can become readsable and
understandab le.

i Enforcement of Structure. lJse o f
38N FSM mode | enforces 3 uniform

approachto the ordganisationof the
entire prosram.

iv. Moditriabiiity. Maintenance o f 3
Piece of software is made easier by

the strict enforcement of
structure. Once the Finite State
Tatle has been set wuvpr andthe

set of action procedures wWr i tten
asdrivers for lower t1evel "utility
procedures™) new actionsy
transitions and states can ususa!lly
be addedwwicklvandeasily.

The an | v disadvantadge encountered was
the Potent i8lfor the F'SM model to become
comp lex. When protocols become
complicated, their FSM mode | canbecome
very larde and cumbersome(this is c3lied
“state explosion”). Tabular
representationso f Izarge FSMs can be
manadged but grsrh | cal representst i on5 may
be .unwieldly

Conclusion

T h e averasge rersonal computer can
host 3 perfectly satisfactory environment
for commun i cat i on sof tware deve | opment in
3 highlevel language.

The use of & n igh Jlevel lansuage
requires 3 more formal approach t o]
software design. Software for driving the
10 devices canconvenientlr be ordgzanised

as 8 module. In anevent driven system:
the entire system’s contro!l flow can be
encapsulated in 3 Finite State Machi ne
mode |,

These des i gn akstract i ons have been
appliedin the develorment of softwarefor
RTTY and AX. 25 byt h e author. They were
foundt o increase software reliabil ity
and make the source code more
understandab le andmodifisble

References

(WB4JFI)»
Link-l_ayer

CFox 847 Terry L. Fox
“AX.295 Amateur Facket-Radio
Frotoco I " » October 1984,

179

