
Pacsat Protocol: File Transfer Level 0

Jeff Ward, GO/KSKA
Harold E. Price, NK6K

ABSTRACT

This document specifies Version 0 of the File Transfer Level 0 (FTU)) protocol designed for
use on store-and-forward satellites (PACSATs). The protocol provides procedures for
transferring binary files to and from a server computer using an error-corrected communica-
tion link.

Further to basic file transfer facilities, FL0 provides file selection and directory procedures.
Because a server may contain many files, only some of which are of interest to each client,
the client may “select” a subset of the server’s files. Subset selection is based on a flexible
logical equation involving a large number of file characteristics. The scope of directory re-
quests or file download requests can be limited to those files currently selected.

This protocol is designed to work specifically with files in which the actual “data” or “bodv”
of the file is Dreceded bv a standard “header”, specified in the PACSAT File Head&
Definition document.

1.0 BACKGROUND

Terrestrial packet-radio bulletin board systems
(PBBSs) in the amateur radio service generally
provide a character-based, human-to-machine
interface through which user’s command the PBBS
software. A similar interface has been adopted on
the FUJI-OSCAR store-and-forward (PACSAT)
satellites. Through the character-based interface,
the user selects messages, requests directory list-
ings, and views, stores and deletes messages. All
messages are stored as ASCII text files, and the
PBBS maintains a directory entry for each mes-
sage. The directory contains message source, des-
tination, title, time of storage, size, and status. The
PBBS also stores data relating to each user station,
such as the most re-cent message each user station
has listed or viewed.

Since messages and PBBS commands contain only
ASCII characters, the user’s station equipment can
be as basic as an ASCII terminal connected to a
terminal node controller (TNC). This simplicity
makes the current system attractive, and has lead
to its widespread adoption.

These current PBBS systems also have several
drawbacks, stemming from the text-based user

interface and from the lack of a flexible, informa-
tive message header. All messages must be in
ASCII, only simple ASCU message headers are
supported, and only a few search-keys are pro-
vided for message selection.

These limitations are particularly damaging in the
PACSAT environment. where the user base is
large, the communications bandwidth is restricted,
and the onboard computer software must be com-
pact and highly reliable.

The File Transfer Level 0 protocol defined here,
and the PACSAT File Header Definition pre-
sented elsewhere, combine to provide a PBBS
protocol suite which overcomes the limitations of
the current text-based protocols.

The proposed protocols are based on a different
model of a store-and-forward messaging network.
The PBBS is a “SeTver” and the user stations are
“clients”. The server stores files, each of which
contains a “header” of known format, followed by
a “body”. The header holds information about the
file and about the body, including (but not limited
to) the file length, creation date, destination,
source, keywords, and body compression tech-
nique. The body is the data portion of the file.

209

which can be any digital information, e.g. binary,
ASCII, FAX, digit&d voice, etc.

The user station, or “client” is assumed to be
under computer control. The client sends files to
the server and receives files from the server over
a n A X 2 5 d a t a l i n k , u s i n g a n a u t o m a t e d
server/client file transfer protocol. The client
software interprets and displays the file headers
and bodies for the human user. When the user
wishes to upload a file to the server, client
software must add suitable standardized header
fields to the file, and it may also compress or
otherwise prepare the file for uploading.

Each user is generally interested in only a small
subset of the files available on a server. Using a
powerful selection facility the client can select an
interesting subset of the files on the server for cli-
rectory listing or downloading. The selection can
be based on any combination of items in the file
header, thus user’s software can assure that the
user only “sees” files which are likely to be of in-
terest.

The server might not keep a user data base, and
the client software must store any important
information concerning the user’s last server
session. For example, to implement a command
equivalent to the PBBS command “list new”, the
client software must store the message number, or
date and time of the of the last access to the
server.

Since this protocol is also useful for terrestrial
servers, we use the terms “server” and “client”
throughout, i n s t e a d o f “PACSAT” and
“groundstation”. The protocol does depend on the
presence of the standard PACSAT file header, this
is to implement file locking or other features. A
version of the protocol that can be used by terres-
trial stations without the PACSAT headers is un-
der consideration.

FIX0 includes several features that make the
protocol somewhat more complex than some oth-
ers in use in the amateur packet network. These
features include simultaneous bidirectional file
transfer, file locking by forwarding gateways, and
multiple destination forwarding. As is sometimes
the case, the actual implementation is smaller than
the specification. The pseudo-code provided in
Appendix B and C show that the protocol is actu-
ally quite straightforward. The authors also plan

to make the prototype source’code available on a
public BBS.

1.1 FTLO

The FTLO protocol can support full-duplex mes-
sage transfer, in which a single data link (AX.25
connection) is used simultaneously to upload one
file and to download another file. Client software
does not necessarily have to implement this capa-
bility. The protocol provides for continuation of
uploads and downloads interrupted by loss of the
data link (generally caused by LOS at a satellite
groundstation), and includes confirmation band-
shakes at all critical stages of file transfer. An
FIX0 file transfer should withstand interruption at
any stage.

It is assumed that the client software uses the
transparent mode of an AX.25 TNC and that the
AX.25 connection represents an error-free chan-
nel. Other data links which present an ordered,
e r ro r cor rec ted by te s t ream may be used .
Although the link may be terminated at any time,
it is assumed that the link will not pass corrupted
or out-of-order bytes, and that processes at both,
ends of the link will be notified if the link is termi-
nated. The PACSAT File Header standard pro-
vides overall checks on the integrity of files trans-
ferred to and from fully-compliant servers.

FTLO commands and responses form simple
“packets” inside the byte stream on the communi-
cations link. Specifically, in AX25, an FIX0
packet may be transmitted in one or more AX.25 I
frames; neither the server nor the client is aware
of the AX.25 I frame boundaries. The packet
format is described in 2.0 below.

1.2 Associated Documents

PACSAT Data Specification Standards defines the
meaning of data types and structures within this
specification.

The PACSAT File Header Definition defines the
file header fields which must be pre-pended to
files before uploading to a fully-compliant FTLO
server. (FTLO procedures for terrestrial servers
without PACSAT file headers are under develop-
ment .)

210

1.3 Terminology implement may implement menus or some other
user interface.

server
client
commands

responses

upiink

downlink

packet

frame
data link

is the PACSAT or tbe PBBS.
is tbe user station.
are transmitted from the client to tbe
server
are transmitted from the sewer to the
client
is data flow from the client to the
server
is data flow from the server to the
client
is a sequence of bytes as defined in
2.0 below
is an AX25 level 2 I frame
generally an AX.25 level 2 link, but
may be a link using any protocol
which provides an ordered, error-
checked, data transparent we
stream.

1.4 Overview of Operation

To allow simultaneous uploading and download-
ing. FU.4 clients and servers implement two state
machines. One is related to file uploads, and the
second to all other possible commands. FLTO is
not symmetric; the protocol state machines im-
plemented by the server are necessarily different
from those implemented by the clients.

Dividing the data stream into packets allows for
modular software implementation a n d t h e
multiplexing of commands and data on a single
data link. The packet format is simple. Every
packet begins with 2 bytes of control information,
which can be followed by 0 to 2047 bytes of data.
The packet may arrive in many AX.25 I frames.
No packet synchronization or checksumming is
provided, since the data link (AX.25 connection)
provides a notionally error-free connection. Fuh
file error checks are performed at tbe completion
of file transfers.

It is assumed that neither the client software nor
the server software is aware of or can control data
link (AX25) frame boundaries.

A lTL0 session starts when an data Iink is estab-
lished between tbe server and the client. The
Server will send a LOGIN response when the
connection is established.

To allow the user to specify a group of files for di-
rectory listings or downloading, the client software

Once the user has indicated the desired files, the
client software converts the user’s preferences into
an equation , such as

((SOURCE = “GOKWV”) && (KEYWORD =
“*FFLO*“)) && (FILE NUMBER > 3215).

And then encodes the equation in a postfix, binary
format as a SELECT command. When the server
receives a SELECT command it builds a list of
files for which the equation evaluates to TRUE.
As a response to the SELECT command, the
server informs tbe client bow many files are in the
selection list.

When the client sends a one of the directory com-
mands, the server responds by transmitt ing
directory information for the next 10 files on the
selected list. Each subsequent directory command
results in the server transmitting directory infor-
mation for a further 10 files from the selection list,
until the list is exhausted.

Specific files or files from the selection list may be
requested by the client for downloading. The
download procedure consists of two com-
mand/response cycles. On the first cycle, the
client requests the file and the sewer responds by
transmitting the file as a series of DATA packets
followed by an END OF DATA packet. The
server then waits for t.62 client to acknowledge re-
ceipt of the file. When the server receives the ac-
knowledgement, it transmits a final handshake and
the download is finished.

To upload a file to the server, the client sends an
UPLOAD command telling the server how large
the file is. The server responds with a handshake
which either tells the client to abort or to proceed.
If instructed to proceed, the client sends the entire
file as a series of DATA packets followed by an
DATA END packet. Tbe server receives the en-
tire fileTand then either acknowledges the transfer
or sends an error indication.

Because PACSAT may go over tbe horizon in the
midst of a transaction, downloading and uploading
can be continued during several sessions with tbe
server. Wben a download is interrupted, the client
must retain the file offset at which communica-
tions was interrupted. For interrupted uploads,
the server stores the appropriate offset.

211

1.5 File Identification

Although servers may identify files using some
kind of system file name (PACSATs use the MS-
DOS standard of an 8 character body and a 3
character extension), FFLO does not use server file
names to identify fries. Instead, the server assigns
every fde a 32-bit file number. This is to insure
that two files with different contents but the same
name will never be confused. Thus, every mes-
sage which a user uploads to PACSAT (or another
FI’LO server) will have a unique identifier.

1.6 Gateway Procedures

Some messages on PACSAT will be destined for
gateway stations which will introduce the mes-
sages into other networks. It is essential that only
one gateway download and relay each message.
To accommodate this, FTL0 provides locked
downloads. Only one gateway at a time can per-
form a locked download of a given file for a gjven
destination. If a locked download is interrupted,
this will be indicated in the PACSAT File Header
of the file, so that other gateways can tell when a
file is in the process of being delivered.

PACSAT File Headers allow files with multiple
destinations, and separate locks are implemented
for each destination. See Appendix A for further
information.

1.7 Delivery Registration

A simple form of delivery registration is supported
by FILO. In the final handshake after receiving a
file, the client can command the server to modify
the contents of the PACSAT File Header to show
the AX.25 address of the client and the time at
which the download was completed. It is intended
that this facility be used if the file is specifically
addressed to the client station, not for files of gen-
eral interest. If the file has multiple destinations,
one “registration” is supported for each destina-
tion. See Appendix A for further information.

1.8 State Variables

In order to support full-duplex operations, the
server and the client maintain 2 state variables,
one relating to the uploading of files and the other
relating to all other operations (selecting, directo-
ries, and downloading). These are called the up-
link state and the downlink state variables.

Appendix B provides pseudo-code definitions of
the state transitions for sewers, Appendix C is for
clients.

2.0 PACKET FORMAT

An FILO packet is a sequence of information
bytes preceded by a two byte header. After es-
tablishment of a data link, the first byte delivered
to either client or server is the first byte of a
packet header. The packet header informs the
client/server the type of the packet and the num-
ber of information bytes which will follow. There
may be between 0 and 2047 information bytes, in-
clusive. After reception of the final information
byte of a packet, the client/server expects the next
byte to be the first byte of another packet header.
Such a stream is shown below, where [<data >]
indicates that there may be no data bytes.

4engtb lsbxhl> [<info), . I]<lenqth lsbxhl> [<info>. e .]
I ---P&t ITLO packet--- 1 --Second FTLO packet--- 1

2S Header Format

struct FTLOJ’KT (
unsigned char 1engthJsb;
unsigned char hl;

<length-lsb > - 8 bit unsigned integer
the least significant 8 bits of data length.

suPPlYmg

< hl > - an &bit field.

bits 7-5 contribute 3 most significant
bits to data length.

bits 4-O encode 32 packet types as
follows:

0 DATA
1 DATA END
2 LOGIN RESP
3 UPLOAD CMD
4 UL GO RESP
5 UL-ERROR RESP
6 UL-ACK R&P
7 ULNAK-RESP
8 DO-iL6AD CMD
9 DL ERROR RESP
10 DL-ABORTED RESP
11 DL-COMPLETED RESP
12 D L - A C K C M D -

212

13 DL NAK CMD
14 DIR SHORT CMD
15 DIR-LONG i!MD
16 SELECT CIiiD
17 SELECT-RESP

2.2 Informatiom Length

The <information length > value is formed by
pre-pending b i t s 715 of the <hl> byte to the
<length Isb > byte. <information length > indi-
cates ho& many more bytes will be received be-
fore the beginning of the nex t packe t . I f
<information
tion bytes. -

length> is 0, there are no informa-

3-O LOGON

As soon as a data link is established between the
client and the server, the client is considered to be
logged on. The server sends a LOGIN RESP
packet with one byte of flags and a 4-byte-times-
tamp.

When the client receives the LOGIN RESP
packet the server is initialized and ready to begin
transactions.

3.1 Initiation of Session

An flL0 session is initiated when a data link is
established between the client and the server.

3.2 Server Login Response Packet

When the data link is established the server trans-
mits a LOGIN RESP packet.

Packet: LOGIN RESP
Information: 5 bytes

struct WIN-DATA (
unsigned long login time;
unsigned char loqin~flaqs;

1

clogin time> - a 32-bit unsigned integer indicat-
ing the number of seconds since January 1,197O.

<@in-flags > - an 8-bit field.

Bit 3, the SelectionActive bit, will be 1 if there is
already an active selection list for this client. The
SelectionActive bit will be 0 if there is no active
selection for this client already available.

Bit 2, the HeaderPFH bit, will be 1 if the server
uses and requires PACSAT File Headers on all
files. If the HeaderPFH bit is 1, the flag
PFHserver used in the following definition should
be considered TRUE.

The HeaderPFH bit will be 0 if the Server does
no t use PACSAT Fi le Headers . If the
HeaderPFH bit is 0, the modified procedures
specified in Section 7 should be used.

Bits 1 and 0 form a 2-bit FI’LO protocol version
number. The version described here is 0.

3.3 Server Login LnitiaIization

Upon transmitting the LOGIN RESP packet the
server should initialize its &te variables to
UL CMD WAIT and DL CMD WAIT.

3.4 Client Login In.itial.ization

Upon receiving the LOGIN RESP packet, the
client should initialize its state variables to
UL CMD OK and DL CMD OK.

4.0 SELECT

The select command is the mechanism through
which the client can search the server for desirable
files. The human user can search the files on the
server based on any information contained in the
PACSAT File Header. To achieve this goal, the
implementation and specification go through sev-
eral levels of abstraction which must be followed
closely.

The user’s desires form an equation. The equation
might simply be “the file is to GOKSKA and it was
stored after my last logon”. Or it might be more
complex, e.g. “the file is less than 8 kbytes, and it
was created after 9 July 1990, and it has
‘landrover” as one of its keywords”. Humans
would naturally express this in “infix” notation:

(FILE SIZE < 8k) && (CREATE DATE > 9
July lh) && (KEYWORDS = = “‘landrover*“)bit:76543210

xxxxsHvv

213

The server uses “postfix” notation, like an RPN
calculator: and wants an equation like:

(FILE SIZE < 8k) (CREATE DATE > 9 july
1990) g& (KEYWORDS = = “*landrover*“) &&I

To convert a postfix logical equation into a
SELECT command. the client must encode the
logical operators, the relational operators the
header item names, and tbe values to compare
against. Tbe header item names and comparison
v a l u e s a r e encocled j u s t a s they a r e i n t b e
PACSAT File Header definition. The logical op-
erators and relational operators are encoded as
single bytes. Tbe complete syntax is defined be-
low .

4.1 Client Issuing Select Command

struct LVALUEl (
unsigned char relop;
unsigned int item id;
unsigned char length;
unsigned char constant [] ;

1

< relon > is an 8-bit field encoding a relational op-
erator:

b i t
0

When the client’s downlink state variable is
DL CMD OK (e.g. the client is not involved in
another select, file download, or directory down-
load), the client may transmit a SELECT CMD
packet.

b i t
000
001
010
011
100
101
110
111

Packet: SELECT CMD
Information: variable length SELECTION

bit 321Q
0000

SELECTION is defined recursively by the fol-
lowing structures and rules.

struct SELECTION (
struct LVALUEx equation;
unsigned char end-flag;

>

<end flag > - 0x00

<equation > is recursively defined by two struc-
tures LVALUEO and LVALLJEI:

0001

0010

0011

0100

struct LVALUEO (
struct LVALUEX t1;
struct LVALUEx t2;
unsigned char lop;

1

ALL OTHER VALUES RESERVED.

<item id > is a 160bit unsigned integer identifying
one of the PACSAT Header Definition header
items.

c tl > and < t2 > are furtber LVALUEO or
LVALUEl structures. <length> is the number of bytes in the

cconstantf]> array.
c lop> is and 8-bit field representing a logical op-
erator:

bit 76543210
ooooOool is AID

<constant[] > is an array of bytes which are com-
pared against the header item identified by
c item id > , using the specified relational operator
and co&parison type.

00000010 is OR

Relational ODerator
equal to
greater than
less than
not equal
greater than or equal to
less than or equal to
reserved
reserved

Tvne of ComDarison
treat <constant > as a multi-byte
unsigned integer (valid for
<length > l,2, and 4).
treat <constant > as a multi-byte
signed integer (valid for
c length > 1,2,and 4).
treat <constant > as an array
of unsigned char
treat <constant > as an array of
ASCII characters, convert to
lower case before making com-
parison.
treat <constant > as an array of
ASCII characters, convert to
lower case before comparison
and interpret wildcard characters.

214

4.2 Response to Select Command

T’he server responds with one of the packets from
42.1 or 4.2.2 and returns its downlink state to
DL CMD OK, ready to accept another command
from the client.

4.2.3 Successful Selection

If the server can interpret the SELECT CMD
packet, it responds with a SELECT RESP packet

Packet: SELECT RESP
Information: 2 bytes

unsigned int no of fil- - .es

en0 of files> is a 16 bit
how &any files have been

UkgIEd

sekcted.

4.2.2 Unsuccessful Sele-ction

integer telling
It may be 0.

If the server cannot interpret the SELECT CMD
packet, it responds with a DL ERROR-RESP
packet

Packet: DL ERROR RESP
Information: 1 byte -

unsigned char err code

<err ctie> is ER POORLY FORMED SEL if
the s&tion equat& could not be parsed by the
server because of a syntax error.

5.0 DOWNLOAD

To receive a file from the server, the client uses
the download command. This command can be
used to download a specific file, to continue the
downloading of a specific file, or to download the
next file in the sehion list.

5.1 Client hitiates Download

When the c l i en t ’ s uplink s t a t e va r i ab le i s
DL CMD OK, the client may send the
DO-WNLCAD CMD packet.

Packet: DOWNLOAD CMD
Information : 9 byte< of arguments with the
roll owing structure

struct (
unsigned long file no;
unsigned long bytkoffset;

unsigned char lock-destination;

<file no> is a 32.bit binary integer uniquely
identifying a file on the server. Two reserved val-
ues have special meanings: If <file-no> is equal
to Oxffffffff, the server will attempt to use the next
file in the current selection list, moving from older
files to newer fdes. If <file no> is equal to 0, the
server will attempt to use the next file in the cur-
rent selection list, moving from newer files toward
aider files. If <file-no > is not one of the reserved
values, the server attempts to download the file
which it associa tes with c file no x

<byte offset > is a 320bit unsigned binary integer
giving-the offset from the beginning of the file at
which the download should begin. If the client is
continuing an aborted download, this argument
should be set to the number of bytes pre,viouslvd
received. Otherwise it should be 0.

<lock destination > is an 8 bit unsigned binary
intege;. It will generally be set to 0 by non-gate-
way stations.

IIf < lock destination > is not 0, it indicates that
the client wishes to conduct a locked download for
the destination numbered by clock destination > .
If the <lock destination > exists and-s not ahead*
locked, the client’s AX25 address is placed in the
PACSAT FiJe Header AX25 DOWNLOADER
item associated with the specified DESTINATION
item. Destination numbering is defined in section
x.x]

5.2 Server Responses to the Download
Command

When it receives a DOWNLOAD CMD packet
the server determines whether the download is
possible. This may include determination of the
desired file number from the current select list.

5.2.1 Dowdinking File Data

If the download is possible the server transmits the
file data beginning <byte offset > bytes from the
beginning of the file. If cbyte -offset> is greater
than or equal to the file length, no data is trans-
mitted. The file data bytes are transmitted as in-
formation in DATA packets. These packe,ts may
be any size from 0 to 2047 bytes.

215

[If < lock destination > is not-zero, the server sets
the <DOWNLOAD TIME> associated
clock destination > bef&e beginning to send
DATA packets.]

Once the server has transmitted a DATA packet
containing the last byte of the file, or if the
<byte offset> was greater than or equal to the
f i l e l eng th , the se rver t r ansmi t s a s ing le
DATA END packet. After transmitting the end
packet,- t h e s e r v e r e x p e c t s to r e c e i v e a
DL ACK CMD or DL NAK CMD.

5.2.2 Failure of Download Command

If the server cannot service the download com-
mand, it responds with a DL ERROR RESP
packet.

Packet: DL ERROR RESP
Information: 1 byte

unsigned char err code;

<register destination > is an &bit unsigned integer
identify& one of the destinations in the PACSAT
File Header of the downloaded l .file
<register destination > should be 0 if the client
does not &I to register receipt of the file.

Upon receiving the DL ACK CMD packet, the
server completes the download process.

(If <register destination > is[If <register destination > is not 0, the appropriatenot 0 9

DESTINA~ON i t e m i n
the appropriate

DESTINA~ON i t e m i n t h e P A C S A T F i l ethe PACSAT File
H e a d e r i sH e a d e r i s l o c a t e d a nlocated and theId 1he associatedassociated
AX25 DOWNLOADERAX25 DOWNLOADER andand
DOWNLOAD TIME item:DOWNLOAD TIME i t ems a re upda ted . I f; are: updated. If
clock destination >clock destination > waswas non-n o n - z e r o i n t h ezero in the
DOWNLOAD COMMANDDOWNLOAD COMMAND, the server locates1 the
the appropriate DESTINAthe appropriate DESTINATION item in the.iIOP

server locates
J item in the

PACSAT File Header and uPACSAT File Header and updates the associatedpdate s the associated
DOWNLOAD TIME item.]DOWNLOAD TIME item.]

5.3.2 Unsuccessful or Aborted Download

If the client wishes to abort the download before
receiving the DATA END packet from the server,
or finds that the downloaded file fails some in-
tegrity test after reception of the DATA END
packet, the client sends the DL NAKCMD
packet.

<err code > is an S-bit unsigned binary integer
will be one of:

ER SELECTION EMPTY if the selection list has
no more files in it or no select command was
previously received.

ER NO SUCH FILE NUMBER if the file iden-
tified by-c file no > do& not exist.

ER ALREADY LOCKED - <lock destination>
wasnot 0, and the file is already l&ked for the
specified destination.

ER NO SUCH DESTINATION
<l&k d&inati& > was not 0, and the file has
fewer-than <lock destination > DESTINATION
items in its PACSKT File Header.]

Packet: DL NAK CMD
Informa tioG none-

Upon receiving this packet, if the serveUpon receiving this packet, if the server has noter has not
already sent the DATA-END packet, italready sent the DATA END packet, it will do soudl do so
and proceed to the final unsuccessfuland proceed to the f&l unsuccessful downloaddownload
handshake (5.4.2). If DL NAK CMD ihandshake (5.4.2). If DL NAK CMD is receivedS received
after the server has transmitted&e DAafter the server has transmitted&e DATA END,T‘A END
packet, the server proceeds to the foalpacket, the server proceeds to the foal downloaddownload
handshake.

5.4 Final Download Handshake

5.3 Client Accepting or Rejecting
Downloaded File

5.4.1 Completion of Successful Download

5.3.1 Successful Download

Upon reception of the DATA END packet from
‘the server, the client performs any possible checks
on the received file. If the file passes the checks,
the client transmits a DL ACK CMD packet.

Packet: DL ACK CMD
InformatioG 1 byte

unsigned char c register-destination >

[If the server receives the DL ACK CMD, it re-
moves any <lock destination 3 lock horn the file
and sets <Ah5 DOWNLOADER > and
<DOWNLOAD TIMi& f o r t h e s p e c i f i e d
<DESTINATIO% > item.]

[If <register destination > in the DL ACK CMD
is non-zero, the server at tempts-to Set the
<AX25 DOWNLOADER > and
<DOWNLOAD TIME> items associated with
the specified GESTINATION > item. If the

216

<register destination > does not exist, the server
transmits; DL ABORTED RESP packet.]

If <register destination > was 0, the server trans-
mits a DL COMPLETED RESP packet, and re-
turns its downlink state vansble to DL CMD OK.

Packet: DL COMPLETED RESP
Informa t;oG none. -

This response tells the client that the server has
completed processing the DL ACK CMD. The
client downlink state variable should be set to
DL CMD OK.

If the L2 link fails before the client receives the
DL DONE RESP, the client cannot be sure the
DL-ACK CMD was processed. This is important
if tb;: client had specified a <lock destination > or
a <register destination >. In either of these cases,
the client should treat the download as incomplete
and continue it Iater. This assures that the
PACSAT File Header has been properly modified.
If both
< register destina ti
sider the download

<lock destination > and
#on> were 0, the clien t can con-
complete.

5.4.2 Completion of Unsuccessful Download

A download is “unsucce
ceives the DL NAK CM
c register destina tionS is
non-exist&t destination.

ssful” i f
D from
non-xx0

the server re-
the client or if
and indicates a

If clock destination > was non-zero, the lock is
removed- and < DOWNLOAD-TIME > is up-
dated.

The server transmits the DL ABORTED RESP
packet.

Packet: DL ABORTED RESP
InformatioG n o n e -

The server downlink state variable returns to the
DL CMD OK state.

Upon reception of the DL ABORTED RESP the
c l i e n t downlink s t a t e - v a r i a b l e returns t o
DL CMD OK.

.
6.0 DIRECTORY

The client uses directory commands to get
information about files on the server. Servers con-
forming to the PACSAT File Header Definition
send PACSAT File Headers as directory entries.
“Long” directory en t r i e s a re the comple te
PACSAT File Header and “short” directory en-
tries are only the Mandatory File Header items.

The client can request a directory entry for a spe-
cific file or for the files in the selection list. The
selection list can be scanned from oldest to newest
files or from newest to oldest files.

6.1 Initiating a Directory

The client may request a directory whenever the
client downlink state variable is DL CMD OK.
To request a directory, the client transmits either a
DIR LONG CMD packet or a
DIR-SHORT CMD packet.

Packet: DIR LONG CMD
or DIR-SHORT CMD

Information:4 bytes -
unsigned long file no;

<file no> is a 32.bit unsigned binary integer
identifying a file or files on the server. There arc
two reserved values: 0 and Oxffffffff. If <file-no>
is Oxffffffff, the server will send directory entries
for the next 10 files in the current selection list,
moving from older files to newer files. If
<file no > is 0, the server will send directory en-
tries for the next 10 files in the current selection
list, moving from newer files toward older files.

6.2 Server Responses to Directory
Commands

6.2.1 Successful Directory Request

If the directory request can be serviced (there are
files in the selection list, or a specified file exists)
the server will transmit one or more PACSAT File
Headers in a series of DATA packets followed by
a DATA END packet. A maximum of 10 file
headers &l be transmitted for each DIR com-
mand.

6.2.2. Failed Directory Request

If the directory request cannot be serviced, a
DL ERROR RESP packet is transmitted.

217

Packet: DL ERROR RESP
Information: 1 byte -

unsigned char err code;

<byte offset > is a 32-bit unsigned binary integer
numb& of bytes from the beginning of the file at
which the client should begin file transmission.
This will be 0 if the <continue file no > was zero.

<err code > will be one of:

ER SELECTION EMPTY - if the <file no>
was-0 or Oxffffffff,and either there are no files left
in the selection list or there is no selection list.

After receiving the UPLOAD PROCEED RESP
packet, the client should adf;ance to the data
transmitting state described in Section 7.3.

7.2.2 Unsuccessful Upload Request
ER NO SUCH FILE NUMBER - if <file no>
is got 0 or dfffffff -and no file identified by
<file no> exists on the server.

If the server cannot process the upload request, it
will transmit an UL ERROR RESP packet.

7. UPLOAD

7.1. Initiating an Upload

Packet: UL ERROR RESP
Informatio; 1 byte -

unsigned char err code;

<err code > must be one of:
The client can initiate an upload any time the
client’s upload state variable is UL CMD OK.

Packet: UPLOAD CMD
Information: 8 bytes

ER NO SUCH PILE NUMBER
.
If

<c&i.n~e file no> isnot 0 and the file identified
by <con&e tie no> does not exist. Continue
is not possible- -

s t r u c t (
unsigned long continue file no;
unsigned long file-length; -

1

<continue file no> - a 32-bit unsigned integer
identifying the file to continue. Used to continue
a previously-aborted upload. Must be 0 when
commencing a new upload.

< file-length > - 320bit unsigned integer indicating
the number of bytes in the file.

ER BAD CONTINUE if <continue file no> is
not-0 and-the <file length > does nor agee with
the <file length > fieviously associated with the
file identified by <continue file no > . Continue is
not possible.

.
ER PILE COMPLETE if <continue file no> is
not 0 and the lfile ident i f ied by
c continue file no> was completely received on a
previous u$oa% Note - receipt of this command
should be accepted by the client as confirmation of
file receipt by the server.

7.2 Server Responses to Upload requests ER NO ROOM if the server does not have room
for the file.

Downlink Packet: UL GO RESP or
UL ERROR RESP After transmitting the CJL ERROR RESP packet.

t h e s e r v e r ’ s uplink staLe variable i s s e t t o
7.2.1 Successful Upload Request UL CMD OK.

Packet: UL GO RESP
Information! 8 bytes

struct (
unsigned long server file no:
unsigned long byte-offset;

1

<server file no> is a 32-bit unsigned binary inte-
ger ide&yGg the client’s file on the server.

7.2.3 Continuation of Uploads

Any file for which the client receives a
UL GO RESP should be continued until a
UL-ACK RESP or a non-recoverable
UL-ERR-RESP or UL NAK RESP for that file
is r&eived. The server should be prepared to
continue reception of any file for which it has
transmitted a UL-GO-RESP. Some file numbers
will be allocatd~by the server and lost by link

218

failure before the UL GO RESP reaches the
client; a 32-bit file number &ace provides suffi-
cient scope for some lost file numbers. To avoid
saving partial files for these lost file numbers, the
server should not reserve space for a message until
it has received at least one DATA packet from the
client.

73. Data Uplinking Stage

The client now uplinks the bytes from the file, in
DATA packets. T h e uplinking should b e g i n
<byte offset> bytes from the start of the file.
After transmitting a DATA packet containing the
last byte in the file, the client should transmit a
DATA END packet. The client should also
transtiy a DATA END packe t if the
<byte offset > was gr&er than or equal to the
file length.

The server may attempt to terminate the upload
by transmitting a UL NAK RESP at any time
during the upload. -If the client receives a
UL NAK RESP packet before transmitting a
DA?A END packet the client must send a
DATA-END packet.

DATA END checks ‘, itfall s e n d s t h e
UL NAK RESP packet.

Information: 1 byte
unsigned char err code;

cerr code> must be one of:

ER BAD HEADER - The file either has no
PFH, or has a badly-formed PFH.

ER HEADER CHECK - The PFH checksum
failed. -

ER BODY CHECK - The PFH body checksum
failed. -

ER NO ROOM - The server ran out of room for
fileitorage before the upload was complete. The
server will implement procedures to avoid fre-
quentiy running out of room, but this cannot be
guaranteed.

After transmitting the UL NAK RESP packet,
the server uplink state variable is UL CMD OK.
After receiving the UL ERROR REST, the &ent
uplink state variable is CL CMD-OK.

7.4. Completion of Upload
7.4.3 Link Failure During Upload

7.4.1 Successful Upload Completion

When the server receives the DATA END packet
it will check the integrity of the file as far as possi-
ble. If the chocks pass, the server will downlink a
UL ACK RESP packet.

Packet: UL ACK RESP
Information none

After transmitting the UL ACK RESP the server
uplink state variable is EL CMD OK. After
receiving the UL ACK REST, the-client uplink
state variable is Uz CM6 OK.

If the data link fails before the server receives the
DATA END packet, the server retains the offset
of the next byte needed for the file. This value
will be transmitted by the server as <byte offset >
if the client Later continues the upload by speci-
fying the < server-file no > in the
<cont inue f i l e no> of an- UPLOAD CMD
packet. If&e iffset is not 0, the server niaysafel\-’
retain a temporary file containing the data re-
ceived so far. If the server retains files for which
the <byte offset > is 0, these should be purged
after some reasonable time, since the client may
not know the < server file no > of the file.

7.4.2 Failure Caused by Server Rejecting Upload
8.0 TERMINATION OF SESSION

The server may reject an upload while the client is
sending DATA packets (due to file system prob-
lems on the server) or after the client has sent the
DATA END packet (due to corruption of the
fde) .

The session is terminated by closing the data link.
Either the client or the server may decide to close
the link when uplink state is UL CMD OK and
downlink state is DL CMD OK. -The l&k is also
terminated if unexpected pa;kets are received.

If the server must abort the upload while receiving
D A T A p a c k e t s o r after receiving the

219

If the link terminates when any state machine is
not in the CMD OK
are taken. - -

state, appropriate actions

APPENDIX A - Use of the PACSAT File
Header

The PACSAT File Header Definition defines a
standard header which will be found at the begin-
ning of every fde downloaded from PACSAT (or
any fully compliant FIU server).

One purpose of the PACSAT File Header is to
allow clients to determine the status of files on the
server. Specifically, the originating client may
wish to find out if the file has been downloaded by
its intended destination, and a Gateway client may
wish to find out if a message still needs to be
downloaded for relay to a particular destination.
Both of these tasks are done by examining a set of
PACSAT Fi le Header Items comprising
<DESTINATION >,
<AX25 DOWNLOADER > and
< DOW%LOAD TIME > .

A gateway will examine <DESTINATION > to
see if it can relay or deliver the file. If so, it will
examine <DOWNLOAD TIME> and
<AX25 DOWNLOADER> todetermine the de-
livery status of the message:

If <DOWNLOAD TIME> is zero, the message
still needs to be relayed.

If <DOWNLOAD TIME> is non-zero, but
<AX25 DOWNLOADER> is blanks, the mes-
sage is G the process of being downloaded, and
the download started at <DOWNLOAD TIME >.

If <DOWNLOAD TIME> is non-zero, and
<AX25 DOWNLOADER> i s non-b lank , the
message-has been downloaded for relay to the
<DESTINATION > .

A similar (but simpler) procedure is used to see if
a specific destination
ceipt” of a file. When
end of a

station
receipt

has “registered
is registered (at

re-
the

successful download),

c AX25 DOWNLOADER > and
<DOWkOAD TIME> will both be correctly-
set.

For these checks to work cone&y, the down-
loading clients must use the proper command pro-
cedures. Gateways mus t se t the cor rec t
clock destination > in their DOWNLOAD CMD
packet%, and clients must set the correct
c register destination > in the DL ACK CMD.
The <lo& destination > procedure should be im-
p lemented- by all ga teways . The < r eg i s -
ter destination> procedure is optional for client
im$ementations.

The proper number for <register destination > or
clock destination > is determinsas follows. If a
file h& only one <DESTINATION > item, it is
destination 1. Any other destinations are num-
bered sequentially in order of occurrence in the
PACSAT File Header.

APPENDIX B - Server State Transition
Deftitions

SERVER STATE DEFINITIONS

The following pseudo code defines the transitions
of the Server state machines in FTLO. One state
machine is used for file uploading. The other state
machine is used for all other procedures.

It is assumed that the data link will be terminated
if there have been no packets transmitted or
received for a period of time (TBD). If the link is
terminated by this “activity timeout” both state
machines receive a “Data Link Terminated” event.
“Data Link Terminated” is also generated if the
link fails for any reason.

When an unexpected packet is received by one of
the state machines, that state machine terminates
the data link and returns to an uninitialized state.
The second state machine is notified of this
through a ‘Data Link Terminated” event, and also
returns to an uninitialized state. At this point, the
FILO processing for this client ceases until the
establishment of another data Iink.

STARTUP

State variables are created when a data link is established between client and server. The server executes the
following:

Transmit LOGIN RESP packet.
ul state:= UL CtiD OK
dlstate : = D L C M D - O K

SERVER UPLINK STATE MACHINE

This machine receives only frames which are relevant to the file uploading process : UPLOAD CMD,
DATA, and DATA END. It also is executed upon timeout of the input timer or termination of theievel 2
link (from local or remote causes).

state UL CMD OK {

EVENT: Receive UPLOAD CMD packet{
if ok to upload

Send UPLOAD GO RESP packet.
d state <- UL I)AfA RX

else -
Send UL ERROR RESP packet.
ul state T- UL CMD OK

EVENT: DEFAULT{
if EVENT is not “data link terminated”

Terminate data link.
ul state <- UL UNINIT

state UL DATA RX {

EVENT: Receive DATA packet {
Try to store data.
if out of storage {

Transmit UL NAK RESP packet.
Close file. - -
Save file offset and file number.
ul state 2 - UL ABORT

else {
Update file offset.
ul state <-%L DATA RX

EVENT: Receive DATA END packet {
Close file.
if file passes checks {

221

Transmit UL ACK RESP packet
ul state c- fi CGD OK

else {
file offset <- 0
Save file offset and file number
TransmihJL NAK RfSP packet
ul state < - fi CGD OK

I
1

EVENT: DEFAULT{
if (file offset > 0)

Save fiIe offset and file number.
if EVENT isnot “data link terminated”

Terminate data link.
ul state <- UL UNINIT

state UL ABORT {

EVENT: Receive DATA packet
ul state <- UL ABORT

EVEhT: Receive DATA END packet
ul state C- UL CMD-OK

EVENT: DEFAULT{
if EVENT is not “data link terminated”

Terminate data link.
ul state G UL UNINIT

SERVER DOWNLINK STATE MACHINE

This machine receives all packets other than UPLOAD CMD, DATA, and DATA END.

state DL CMD OK {

EVENT: Receive SELECT CMD packet {
-if syntax is correct {

Form select list.
Transmit SELECT RESP packet.
dl state < - DL CMD OK

1
else {

Transmit DL ERROR RESP packet.
dl state <- 6 CMD OK

>
>

EVENT: Receive DIR LONG CMD or DIR SHORT CMD packet {
if there are directories to s&d

dl state <- DL DIR DATA
else {-

Transmit DL ERROR RESP packet.
dl state <- fi CMD 6K

EVE
.
lf

NT: Receive DOWNLOAD CMD pat
request can be serviced { -

if <lock destination> < > 0
set P-h3 DOWNLOAD TIME.

dl state c - DL FILE DATA

:ket (

>
else {

Transmit DL ERROR RESP packet.
dl state <- fi CMD 6K

EVENT: Receive DL NAK CMD packet
dl state <- DL C6fD Ok

EVENT: DEFAULT{
if EVENT is not “data link terminated”

Terminate data link.
dl state <- DL UNINIT

state DL DIR D.4TA {
if there is more directory data to send {

Transmit directory data in DATA packets.
dl state <- DL DIR DATA

>
eke (

Transmit DATA END packet.
dl state < - DL CMD OK

EVENT: Receive DL NAK CMD packet{
Transmit DATA END packet.
dl state <- DL CMD OK.

>

EVENT: DEFAULT{
if EVENT is not “data link terminated”

Terminate data link.
dl state <- DL UNINIT

223

state DL FILE DATA {

if there is more file data to send
Transmit file data in DATA packets.
dl state < - DL FILE DATA

else {
Transmit DATA END packet.
dl state <- DL tiLE END

EVENT: Receive DL NAK CMD packet {
If lock destination-c > O-

unlock lock destination.
Transmit DATk END packet.
Transmit DL ABoRTED RESP packet.
dl state <- DL CMD OK

EVENT: DEFAULT {
If lock destination < > 0

u&k lock destination.
if EVENT is not “data link

Terminate data link.
dl state < - DL UNINIT

>

terminated”

state DL FILE END {

EVENT: Receive DL NAK CMD packet {
dl state c - DL CMD OK
Transmit DL KBORfED RESP packet.
If lock destihon c > 0 -

u&&k lock destination.

>

EVENT: Receive DL ACK CMD packet {
if register destination < T 0 and register destination exists {

set PFT. AX25 DOWNLOADER -
set PFH DOW%LOAD TIME
Transmit DL COMPLETED RESP packet.0

else if register destination < > 0 and it doesn’t exist {
Transmit 6L ABORTED RESP.

else if lock destination c > 0 {
unlock 6ck destination.
set PFH A225 DOWNLOADER.
set PFH DOtiOAD TIME.
Transmit DL COMPLETED RESP packet.

dl state < - DL CMD OK

224

EVENT: DEFAULT {
If lock destination < > 0

unl&k lock destination.
if EVENT is not “data link terminated”

Terminate data link.
dl state <- DL UNINIT

1

APPENDIX C - Client State Transition Definitions

Client Pseudo-code State diagrammes.

The following diagrammes indicate how an FI’LO client should react to different events when in different
states.

“User Requests” come from the process using the FFLO state machine.

Receive packets come from the data link and transmit packets go to the data link.

It is assumed that the data link will be terminated if there have been no packets transmitted or received for a
period of time (TBD). If the link is terminated by this “activity timeout ” the state machines receive a “Data
Link Terminated” event. “Data Link Terminated” is also generated if the link fails for any reason.

UPLINK STATE MACHINE

The client uplink state machine controls the file uploading process. File downloading and all other processes
are controlled by the downlink state machine.

The state of the uplink is indicated by the ul state variable.

The uplink state machine processes the following events:

EVENT: User Requests Uplink
EVENT: Data Link Terminated
EVENT: Receive UL GO RESP
EVENT: Receive UL-ERROR RESP
EVENT: Receive UL-ACK RESP
EVE,NT: Receive UL-NAK-RESP

Where the “EVENT: DEFAULT” is indicated, this includes all events on the above list which have not al-
ready been processed.

State UL UNINIT {

EVENT: User Requests File Upload
Refuse.

EVENT: DEFAULT
ignore.

1

225

State UL CMD OK {

EVENT: User Requests File Upload {
Transmit UL CMD packet, setting <continue file no> if necessary.
ul state <- fi WAIT

1

EVENT: DEFAULT{
if EVENT is not “data link terminated”

Terminate data link.
ul state <- UL UNINIT

>
>

State UL WAIT {

EVENT: Receive UL GO RESP packet. {
Associate <server-file number > with the file.
Mark the file COh?TIh!UE.
ul state <- UL DATA

>

EVENT: Receive UL ERROR RESP packet. {
If error is unrecov&able, mafk the file IMPOSSIBLE.
ul state <- UL CMD OK

>

EVENT: DEFAULT{
if EVENT is not “data link terminated”

Terminate data link.
ul state <- UL UNINIT

State UL DATA {
If there is data to send {

Transmit DATA packet.
ul state C- UL DATA.

>
else {

Transmit DATA END packet.
d state C- UL END.

EVENT: Receive UL NAK RESP packet. {
if error is unrecov&able mark file IMPOSSIBLE.
Transmit DATA END packet.
ul state < - UL CMD OK.

1

EVENT: DEFAULT{
if EVENT is not “data link terminated”

Terminate data link.
ul state <- UL UNINIT

State UL END {

EVENT: Receive LJL ACK RESP packet. (
Mark file COMPL~TE6
ul state <- UL CMD OK

>

EVENT: Receive UL NAK RESP packet. {
If error is unrecov&able%ark file IMPOSSIBLE.
ul state c- UL CMD OK

DOU’NLINK STATE MACHINE

The client’s downlink state machine processes the following events:

EVENT: User requests download
EVENT: CTser requests directory
EVENT: User requests selection
EVENT: User requests abort
EVENT: Receive DL ABORTED RESP packet.
EVENT: Receive DL-COMPLETED RESP packet.
EVENT: Receive SELECT RESP packet.
EVENT: Receive LOGIN I?ESP packet.
EVENT: Receive DATA packet.
EVENT: Receive DATA END packet.
EVENT: Receive DL ERROR RESP packet.

The only user request which generates and event when not in DL CMD OK state is “user requests abort”,
which is processed in the DL-DATA state. Ail other requests are;ignored (perhaps queued) until dl state is
DL CMD OK.

State DL UNINIT{

StateDL CMD OK{

EVENT: User requests download (
Transmit DL CMD packet.
dl state := Di WAIT.

EVENT: User requests directory {
Transmit DIR LONG CMD or DIR SHORT CMD packet.
dl state := DCDIR WAIT. - --

227

EVENT: User requests selection {
Transmit SELECT CMD packet.
dl state := DL SEL.

1

EVENT: User requests abort {
ignore.
dl state : = DL CMD OK

)

EVENT: DEFAIJLT(
if EVENT is not “data link terminated”

Terminate data link.
dl state <- UL UNINIT

State DL WAIT{

EVENT: Receive DL ERROR RESP packet {
dl state <- DL CfiD OK. -

EVENT: Receive DATA packet. {
Store data.
Mark file INCOMPLETE.
dl state C- DL DATA.

1

EVENT: Receive DATA END packet. {
If file at client is ok { -

Mark file DATA OK.
Save ccontinue offset > equal to file length.
Transmit DL AtK CMD.

Else {
Mark file INCOMPLETE.
Save <continue offset > of 0.
Transmit DL N-m CMD.

1

dl state <- DL END.

1

EVENT: DEFAULT{
if EVENT is not “data link terminated*’

Terminate data link.
dl state c- UL UNINIT

>

228

State DL DATA{

EVENT: User requests abort {
Save current offset as <continue offset >.

-Transmit DL NAK CMD.
dJ state c - Di ABORT.

>

EVENT: Receive DATA packet. {
Store data.
dl state <- DL DATA.

EVENT: Receive DATA END packet. {
-If file is ok at client

Transmit DL ACK CMD packet.
Else

Transmit DL NAK CMD packet.
dl state c- DL END -

EVENT: DEFAULT{
Save current offset as <continue offset >.
if EVENT is not “data link term&ted”

Terminate data link.
dl state <- UL UNINIT

State DL END{

EVENT: Receive DL ABORTED RESP packet. (
dl state <- DL CMD OK. -

EVENT: Receive DL COMPLETED RESP packet. {
Mark file COMPLkTE.
dl state <- DL CMD OK.

EVENT: DEFAULT{
if EVENT is not “data link terminated”

Terminate data link.
dl state C- UL UNINIT

State DL ABORT{

EVENT: Receive DATA packet. {
Ignore.
dl state c - DL ABORT.

I

229

EVENT: Receive DATA END packet. {
dl state c- DL END.-

>

EVENT: DEFAULT{
if EVENT is not “data link terminated”

Terminate data link.
dl state <- UL UNINIT

1
1

State DL DIR WAIT{

EVENT: Receive DATA packet. {
Send directory data to user.
dl state <- DL DIR DATA.

>

EVENT: Receive DL ERROR RESP packet. {
dl state <- DL C%D OK. -

I

EVENT: DEFAULT{
if EVENT is not “data link

Terminate data link.
dl state c - UL UNINIT

terminated”

State DL DIR DATA{

EVENT: Receive DATA packet. {
Send directory data to user.
dl state c - DL DIR DATA

EVENT: Receive DATA END packet.{
dl state c - DL CMD-OK

EVENT: DEFAULT{
if EVENT is not “data link terminated”

Terminate data link.
dl state <- UL UNINIT

230

State DL SEL{

EVENT: Receive DL ERROR RESP packet. {
dl state := D L UfiINIT -

>

EVENT: Receive SELECT RESP packet. {
dl state := D L UMNI’f

1

EVENT: DEFAULT{
if EVENT is not “data link terminated”

Terminate data link.
dl state c- UL UNINIT

APPENDIX D - Error Codes

N a m eValue
1 ER ILL FORMED CMD
2 ER-BAti CONTINUE
3 ER-SERVER FSYS
4 ER-NO SUCli FILE NUMBER
5 ER-SEcECTIOk Ehii’N
6 ER-MANDATOEY FIELD MISSING
7 ER-NO PFH - -
8 ER-POORLY FORMED SEL
9 ER-ALREADY LOCKED
10 ER-NO SUCH DESTINATION
11 ER-SELECTIOi E M P N
12 ER-FILE COMPLETE
13 ER-NO ROOM
14 ER-BAD HEADER
15 ER-HEAbER CHECK
16 ER-BODY CHECK

231

