
The Client/Server Bulletin Board System (csbss)
Jim Van Peursem - KEOPH

Bob Arasmith - NOARY

Abstract

The current Bulletin Board System (BBS)
network is showing signs of age, There are
problems with duplicate messages, new users are
intimidated by their interface, the channel is
becoming congested, etc. By looking at the
underlying assumptions of the current systems,
significant improvements can be made. Some of
them require substantial changes, but the benefits
far outweigh the trouble involved. This paper looks
at a client/server architecture currently being
developed by NOARY, KEOPH, WB6YRU, and
N6ZFJ, called the csbbs (client/server bbs). The
paper describes the goals of the new system, and
some of the ideas being considered.

Introduction

Typical BBS’s today are becoming more and
more powerful. They are handling an exponentially
increasing number of messages every day. They
are also offering more features to their users. As
compared to BBS systems just a few years ago,
today’s systems have added features like callsign
servers, HF gateways, multiple ports, internet
gateways, etc.

These advances are truly great, but because
of the extra load, some other changes need to be
made in order to keep the system useful and feasible
into the future. Two of these changes come in the
area of user interface, and channel efficiency.

User interface

BBS technology has recently been progressing
in every area except the user interface. Today’s
BBS systems are still command line driven, just
as they have always been, To use any of their

features, you need to know the commands. To
learn the commands, you need to read the online
manual, which consumes bandwidth.

With the powerful Graphical User Interface
(GUI) on today’s computers, it seems silly to
force the command line on all users. Why is it
still done? Because that is the easiest interface to
program. Besides, wha.t  other alternative is there?
The BBS cannot assume any one particular
architecture because there are many including
Macintosh, MS-DOS, MS-Windows, C-64,
Apple II, etc. Each one has it’s own unique
interface, and the users of these systems like to
see that type of interface used. It would be best if
the BBS could be separated into two pieces: one
that handles all of the normal functions and message
forwarding, and one that handles the user interface.
This is easily done with a client/server model.

Client/Server model

The client/server model is a well known method
that is used in many networking situations. It is
the cornerstone for many services on intemet such
as WAIS, Gopher, Archie, NFS, X-windows,
etc. This is an ideal male1  for today’s BBS systems
as well. The BBS that you currently know would
become the server, and a new piece, the client,
would be introduced to handle the user interface.
The client will run locally on the user’s computer,
and talk to the server at a very low level. In this
way, the BBS doesn’t have to worry about
presenting any kind of user interface, and users
can use the BBS in the comfort of their own user
interface.

To better illustrate how this would work,
consider the diagram in Figure 1. As you can

97



see, the server assumes most of the responsibility
of today’s BBS. It forwards bulletins, stores and
forwards all messages, etc. It has no interface to
the user, but rather an interface to the client
application. The client application is responsible
for presenting the information to the user and
handling user commands. Don’t get this confused
with the way things work now. Users won’t send
commands to the server. The user will interact
with the client application by using the mouse
and menu commands for example. Only the client
application will interact with the server.

I
:not a

tion

terminal program)

Figure 1: Client/Server illustration

When the user invokes an action that requires
the server’s attention, the client properly formats
that request and sends it to the server. For example,
if the user requests to read a bulletin (by clicking
the mouse button on a message entry for example),
the client will send the appropriate low level
command to read it (not “r 1234”). The server
will then send that message to the client in a very
efficient manner. See “How to improve channel
utilization” below.

The client can then store that message locally
so that if the user ever wants to read it again, they
can .without  consuming any network bandwidth.
It will be listed and displayed in the same way as
non-local bulletins so it will be a very familiar
interface. It will be a convenient way to archive
messages for later reference. This has other
advantageous side effects which will be discussed
later in “Message Listing”.

How to improve channel utilization
Another problem with current systems is that

they consume far more bandwidth than they really
need to. By taking advantage of some simple
techniques, the BBS’s impact on the channel
utilization can be changed dramatically.

Most of the utilization gains will again come
from the client/server model. Since the BBS
(server) isn’t responsible for providing any kind
of user interface, it can transfer the information in
a way that only the client can decode. For example,
rather than sending the message number 12345
as a text number, which takes 5 bytes, it can be
sent as one 16,bit number, which takes 2 bytes.
The flag bits cou1.d  also fit in that same 16.bit
number, for a savings of a few more bytes per
message listing.

The subject, and all other text components
can be compressed before transmission which
would save even more. Text is very easy to
compress, so a 50% savings is not unheard of.
In fact, the entire body of the message would
likely be sent in compressed binary to give a greater
savings.

These techniques will result in some savings
of channel bandwidth. Some larger savings will
come because the chent  stores message lists locally.
So for example, if a user wants to see the message
listing in a different order, no transmissions are
necessary. The client will use it’s internal list to
derive the new listing.



One  more  l a rge channel utilization
improvement will come from sending message
listings and messages to multiple recipients at once,
If N stations are receiving the information at once,
a bandwidth reduction of N times is realized. This
too will require some special technique because
the AX.25 connection model only allows
point-to-point connections [ 11. Two alternatives
are available.

Either the clients can snoop copies of messages
being read by others, or the server can broadcast
messages at the less utilized times in the day.
This second method would, in effect, offer some
load balancing. If users have the messages stored
locally, because of the broadcasts at non-peak
times, they won’t need to connect to the BBS
during the high congestion times.

The messages can be sent using the UI
protocol, and adding internal message index
numben. For example, at the beginning of sending
the body of a message, first send the BID string.
This will uniquely identify this message. Then
number every frame sent so that a client knows if
it has missed a frame. When this situation arises
it can either send a request to immediately fill this
frame, or wait until the next time the message is
sent and grab a copy of the missing frame.

In general, it seems appropriate for the server
to send out messages at periodic times throughout
the day. This would be done in an effort to maintain
some sort of channel load balancing. If messages
can be sent from server to clients during the very
light utilization times, it will help ease the heavy
usage times. This  wi l l  require  a  lo t  of
experimentation to determine if it is feasible or
not. It might also border on some legal issues.
This may be determined to be broadcasting since
it is a simplex operation. The term, “dispersion”
of information is preferred.

Initially, the message snooping idea seems
more feasible. Since there are so many new

messages arriving at the BBS’s every day, it will
take a lot of dispersion :for them to get to everyone.
However, the more p{opular  messages are read
multiple times by users, so the possibility of
successfully snooping a copy of them is very
likely. The message listing can also be snooped
this way. In fact, the clients may even be able to
snoop messages during BBS forwarding too.

Server Arbitration

Since BBS’s are a. hot spot for many users,
they are a cause for great network congestion.
While many stations are competing to communicate
with them, there is a great potential for collisions.
Some sort of arbitration scheme may help out.

Some areas in Germany are using DAMA [2]
as an arbitration mechanism for their node stations.
We will be experimenting with this technique and
probably others in an effort to reduce the hidden
transmitter problem and collisions in general.

Message Listings

Another area where BBS systems have not
shown much progress is in the area of viewing
message listings. The s’tandard viewing technique
is still chronological. The listing goes from the
most recently received message, to the least
recently received message. This is a very
cumbersome way for users to view messages.
What about viewing them by subject or who they
are addressed to or from?

Hams are starting to address their bulletins in
a more useful way, such as using the TO: field to
give the general category of the bulletin. This is
very useful and should be taken advantage of
better. The user should1  be able to view messages
by categories. The user should also be able to
search the subject field for certain words, or use
regular expression searches. NOARY currently
provides these powerful capabilities in his BBS
software, and they are very popular.



All of these things can be done very efficiently
now because the message listing will only be sent
from the server to the client once. The client will
store the listing and present it to the user in any
way that they want without ever using any network
bandwidth, because it is totally a local operation.
If the user wants to see a different subset or see
the messages in a different order, the client
application takes care of this request locally.

Conclusion
The client/server idea for BBS’s will not take

over immediately, but it will be fairly simple to
use the existing BBS systems along with the csbbs
systems. In fact, current BBS systems can set up
another SSID port that acts as the server port.
That way, those users that don’t have a client
application can still use the BBS in the way that it
is used today. The BBS and server parts can
share the same internal storage and functionality.

The project is currently in the early coding
stage. We are still debating many issues. We hope
to have some very early results soon. NOARY
will be adding the server protocol to his BBS
software, and others will be working on client
applications for different computers.

We are trying to make the interface between
the client and server as general as possible so that
it will work for all computer systems. We currently
have representatives working on client applications
for the Macintosh (KEOPH), MS-DOS
(WB6YRU),  and MS-Windows (N6ZFJ)
architectures. We would like to see the C-64,
Apple II, etc. represented as well so that we don’t
inadvertently make any bad assumptions. If you
would like to volunteer, contact NOARY for more
details.

application. Thanks also to the people currently
working on the client applications. For more
information, feel free to contact them directly.

Bob Arasmith - NOARY - Server
837 Jasmine Dr.
Sunnyvale, CA 94086
NOARY @ NOARY.#NOCAL.CA.USA
internet: nOary@arasmith.com

Jim Van Peursem - KEOPH - Macintosh
RR#l,  Box 83A
Kelley, IA 50134
KEOPH @ NOAN.IA.USA
intemet: jvp@iastate.edu

Gary Mitchell - WB6YRU -MS-DOS
185 1 Laurinda Dr.
San Jose, CA 95124
WB6YRU @ NOARY.#NOCAL.CA.USA

Connie Arasmith - N6ZFJ - MS-Windows
837 Jasmine Dr.
Sunnyvale, CA 94086
N6ZFJ @ NOARY .#NOCAL.CA.USA

References
[1] T.L. Fox - WB4JF1,  AX.25 Amateur

Packet-Radio Link-Layer Protocol. Version 2 .O
Newington, CT: ARRL, 1984.

[2] Detlef J. Schmidt - DK4EG, DAMA - A
New Method of Handling Packets? ARRL
Amateur Radio 8th Computer Networking
Conference, 1989, pg 203-209.

Acknowledgments
Many thanks to NOARY for heading this great

idea. He has an outstanding BBS program that
will be used as the starting point for the server


