
NETWORKING ANSI COLOR GRAPHICS
by Brian A. LanWK04KS

TPALAN Tampa Local Area Network

BACKGROUND

A typical network supports two kinds of users; regular users and super-users. The regular users provide
the NEED for the network. Without those who wish to USE the network, the network is useless! It
doesn’t matter if it is ROSE, NETROM, TCPLP, or SplatRouter-2000; if there are no users, there is no
need.

The second class of users, super-users, try to MEET the needs of the regular users. There are usually
BBSs, but can also be information providers, Internet mail routers, non-radio wormholes to distant places,
and any other resources that might be needed or desired.

While both classes of users should be given equal status pertaining to the use of network resources, the
regular users, obviously, should be given special consideration. Their needs and desires should be
constantly evaluated by the local administrators of the network, as well as by the writers of packet
software.

The users in the early days of packet, the users had low expectations, since this was all a new experience.
The users of 1993 have developed a desire to do more. They want new capabilities. They want to be able
to do things more like landline networks. This brings us to ANSI color graphics.

This paper will briefly describe the needs, the shortcomings, the facts, and the solutions to making our
networks support ANSI color graphics.

THE NEEDS

ANSI color graphics might seem to some to be only unnecessary fluff. In fact, they are correct! But so is
almost all non-emergency, Amateur communications. In Amateur radio, perceived needs determine what
is necessary.

The landline BBS world has for many years greeted its users with ANSI color text and graphics. While
this doesn’t change the content, it does make it seem friendlier and nicer. This environment has led to
many public domain programs for creating ANSI color portraits, allowing the user to express his/her self
with crude but expressi ve tools.

Once this budding artist has a creation that he has developed a deal of pride over, he now wants to
SHARE the portrait with his peers. Acceptance in the ANSI art galleries is very important to those who
have labored so long and hard.

So, the artist gleefully posts his creation in a message on the packet BBS system and sends messages to
all his/her friends to tell them to check it out. What follows has broken lesser men, caused nations to
crumble, and cancelled many good TV series.

The friends all send back messages saying that SOMETHING HAPPENED to the creation and it was not
received as it must have been sent!

THE SHORTCOMINGS 0 BBS CHARACTER HANDLING

The current BBS software in use have totally different features and functionality, but they keep the
message handling portions compatible. They might have OTHER WAYS to dLo these features in addition
to the standard (i.e. SP, SB), but the interface for sending mail IS consistent.

Most of the BBSs have one or more control characters that can be used to abort the message, disconnect,
etc. These character fall in the range of characters with values from 0 to 31. These characters (with the
exception of the carriage return and line feed) are not usually used in ANSI color files. Because of this, it
does not SEEM like there is a problem.

The problem starts, though, with ANSI graphic characters, which fall into the range of values 128 through
255 (characters with the most significant bit set). Some BBS software cannot handle characters in this
range. They either bit-bucket these characters, choke on them, or strip off the eighth bit.

While most BBSs don’t have a problem with MOST of these characters, a few have a problem with at
least one of them, the character value 255 ($FF). The reason for this is-that character oriented libraries
usually return a value of - 1 to indicate an error or the end of file. If you are: using, for example, the C,

. programming language, and define the variable that you are filling with the next character to be a SIGNED
CHARACTER (the default) rather than an UNSIGNED CHARACTER, that -1 looks the same as a 255
that has been sign-extended. - ,

THE SHORTCOMINGS - TNC CHARACTER HANDLING

TNC firmware contributes to the problem, in most cases. Each manufacturer has commands that allow
the 8th bit to be stripped from data coming in. These need to be properly set by e&h user.

In addition, most TNC firmware pre-processes the data that gets placed into its Mini-BBS. This pre-
processing CAN corrupt the data.

THE FACTS - ABOUT ANSI CONTROL SEQUENCES

The biggest problems come from improper perception and inefficient packaging of the ANSI sequences
within a packet.

While this is not the place for a complete dissertation of the details of how ANSI control sequences are
handled, a little explanation is necessary for those who have not dealt with them before.

An ANSI control sequence starts with the ESCAPE character (27 decimal, $lB hexadecimal). This is
followed by the left bracket (‘[‘> character. All ANSI sequences begin with these two characters.

The length of an ANSI sequence is variable. After the beginning sequence, you may have zero or more
numbers (in ASCII) separated by semi-colons (I;‘). Each number can be from 0 to 255. These numbers
are the parameters for the ANSI command.

An ANSI sequence is concluded with a single alpha character (A-Z or a-z). This command code
determines the function that this ANSI sequence is instructing to occur. A good source of reference for
most of the normal ANSI sequences is the MS-DOS version 5.0 User’s Guide and Reference, pages 59%.
600 (ANSISYS).

SIB 40

EXAMPLE 1 - Sample ANSI control sequence

41

In the example, the “ESC [I’ starts the sequence, it has two parameters (1 and 4O), and the ANSI
command code is “H”. The “H” command sequence is a cursor positioning sequence. This particular
example moves the cursor to line 1, column 40 of the display. Note the semi-colon between the two
numbers.

Since all of these characters can be generated from a keyboard, the ANSI standard helps keep from
generating FALSE sequences by placing an inter-character timer into the ANSI parser. Any pause
between the beginning ESCAPE character and the terminating command code causes the parser to treat
the interrupted sequence as an ordinary sequence of characters.

This gets complicated by packet radio, where the first portion of the sequence could be at the end of one
packet, and the end of the sequence being found in the next packet. They could be separated by several
seconds, far long enough for the ANSI parser to determine that it is not to be treated specially.

.’

While there are some existing problems with the handling of 8-bit characters, most of the ANSI woes of
the users are because of this broken sequencing.

THE SOLUTIONS

First, BBS and TNC authors, get into your code and find out what it is REALLY doing with characters
that have the 8th bit set. Re-think your defaults in regards to these. The majority of the users are NOT
using dumb terminals that need the 8th bit stripped. 8th bit transparency should be the default. Always
treat your data buffers as UNSIGNED CHARACTERS. Try to make as few assumptions and limitations
on the data as you can.

Second, TNC Mini-BBSs should store 8th bit characters correctly. By the time of this conference,
PacComm should already be shipping release 3.2 of our Amateur firmware, which supports color file
messages in the PMS.

Third, BBS authors should consider adding the few lines of code needed to properly packetize ANSI
sequences. In TNOS all I had to do was check the queued data size when I came across an ANSI sequence.
If the size was above 200 characters of data, I would flush the packet data BEFORE starting the ANSI
sequence. The result is that the ANSI sequence begins a new packet and is never broken in the midst. That
one simple change means the difference between a perfectly displayed creation, or a horrible fake.

CONCLUSION

While many of us are ready to start tackling digital voice across a network, some have much simpler
needs. And while it may seem minor, this is the first step to such bigger hurdles. We can’t begin to pass
other more complex data forms over the network, if we can’t work together on this one.

The Protocol Wars are (hopefully) over, and one things that I hope that we’ve all learned from them is that
different people approach similar needs in different ways. The Vulcan edict IDIC stands for “Infinite
Diversity in Infinite Combinations”. Our differences make us (collectively) better, when we can work
together and learn from each other.

Brian A. Lantz
Manager of Software Development, PacComm Packet Radio Systems
President, Tampa Local Area Network
Packet: K04KS @K04KS.#TPA.FL.USA.NA
Internet: brianlantz@ delphicorn

