
GPACK - a “real time” PC to TNC protocol
by Matthias Welwarsky, DG2FEF @ DBOKLN.DEU.EU, Am Pelz 77c, 64295 Darmstadt, Germany
translated by Tom Sailer, HB9JNX @ HB9W.CHE.EU, WeinbergstraBe 76, 8408 Winterthur, Switzerland

During the development of the PUFIexNet software package, there was a strong desire to use the
existing hardware, especially the very widespread TNC2, which populates almost every packet radio
station nowadays. Sysops of TheNetNode digipeaters also showed much interest, since many TNN
nodes use TNC2 devices connected using a KISS token ring.

Existing TNC protocols have severe disadvantages. The KISS protocol does not allow much
influence on the channel access. This prevents the implementation of alternative channel access
schemes, such as DAMA or OPTIMA. The so-called “WA8DED Hostmode” does not provide
data transparency, and its throughput is very limited.

The basic concept of GPACK was developed at the end of 1993 by Ekki Plicht, DF40R, Henning
Rech, DF9IC and Gunter Jost, DK7WJ. It was further developed for use in the PUFlexNet
software package by Gunter Jost, DK7WJ, and Matthias Welwarsky, DG2FEF. The protocol then
did not support multiple TNCs connected in a ring topology. It only allowed for one TNC per
asynchronous serial interface. It was then found that a ring topology required different protocol
features than a simple point to point connection.

The current revision of the protocol has many additional features compared to the first version. It
now allows a ring topology of up to eight TNCs connected to a single asynchronous serial interface
of the computer. The ring wiring is hardware compatible with the existing token rings used by the
“TheNetNode” software.

GPACK provides:

l Data transparency
l predictable capacity requirements on the ring
l data and realtime information is distinguished
l fast response to changing channel usage, even under high loading and multiple TNCs on the

ring
l automatic ring setup replaces a channel number “patched” into the (EP)ROM
0 data is protected by-a checksum

The asynchronous serial interface parameters are: 8 data bits, 1 stop bit, no parity bit.

The baud rate on the ring must be at least twice the highest HDLC bit rate of the TNCs connected to
the ring. RTS/CTS is ignored, RTS however should toggle about every 1Oms to reset an eventually
connected hardware watchdog. The TNC software should implement another watchdog which
terminates any transmission if no further data is received from the PC. To reset this watchdog, any
command sent to the TNC will do, for example an LED control command.

Bits 6 and 7 of every byte distinguish between channel data and control codes.

76 543210 meaning
00 xxxxxx channel data
01 xxxccc status/protocol data
lx xxxccc status/protocol data
X
C

data
channel address

132



Control codes always consist of only one byte. Code groups of more than one byte are never used.
Therefore, control codes require little transmission capacity. Control codes are completely
independent from previous or following control codes. This makes the protocol very robust. An
exception to this rule is, as in the KISS protocol, the “start/end” command, which always belongs
to a data packet, and the channel data itself. Because two bits are used to distinguish between
channel data and control codes, only six bits per byte are available for channel data. Therefore, three
data bytes have to be encapsulated into four “GPACKs”, according to the following scheme. Note
that a channel data byte does not correspond directly to a byte on the asynchronous serial interface.

\ I
1st 6PACK 2nd 6PACK 3rd 6PACK 4th 6PACK

Codes OOxx.xxxx ooxx.yyyy ooyy.yyzz oozz. zzzz
Bits 54.3210 76.3210 76.5410 76.5432

The symbols “x”, “y” and “z” with the corresponding bit numbers represent the channel data.
This rather complex scheme was chosen since it requires the least possible shift operations to
extract the channel data from the 6PACKs.

The fast transmission of real time events is achieved by using priority codes. The TNC for example
transmits an appropriate command code at every change of the DCD line. Additionally, the TNC
sends the DCD state about every second to allow recovering of a potentially lost command code.

The coding of the command codes is shown in Table 1. The code OxCO (1100 0000) is not used in
GPACK; this should prevent an accidentally connected KISS TNC from sending.

The data transmission between TNC and PC
The following simple rules govern the data transmission between the TNCs and the PC.

* Channel data is always transmitted in whole packets. Every packet is enclosed with a pair of
“start/end” commands. The channel number carried in the starting “start/end” command
defines the source or destination of the packet. The first data byte carries the TX delay, either
the TX delay that should be used by the transmitter, or the one measured by the receiver,
depending on the data direction. The last data byte carries the checksum. It is adjustet so that
the sum over the whole packet (including TX delay and checksum byte) plus the channel
number add up to OxFF @bit two’s complement arithmetic)

l Priority commands must be processed before ordinary data. If a TNC receives a priority code
with an address that does not match its own, it must immediately retransmit the command,
even if it is just sending a packet.

l A packet of channel data must not be interrupted by another packet of channel data. The TNC
may only place its own packets onto the ring either before or after packets from other TNCs.

Each packet of channel data has the following structure:

* SOF ITXDIDATA [CS [SOF

SOF Start/end of Frame
TXD TX delay in units of 1Oms
DATA Channel-data
c s Checksum byte

This structure results after extracting the data from the 6PACKs. The TX delay can be reconstructed
only after the second GPACK with channel data.

133



H- -L
 foccc
~ 0100 lccc
IO101 occc
0101 lccc
011xyccc
1oxy zccc

11000000
11100ccc

1110 lccc
Table 1

command
start/end of frame
TX underrun
RX overrun
RX buffer overflow
LED: STA=x; CON=y
priority message
‘x = TX counter + 1
y = RX counter + 1
z = DCD state
not used (KISS FEND)
send calibration pattern for 15s
calibration terminated
TNC address

rdirection

TNC + PC
TNC -3 PC
TNC + PC
PC + TNC

PC G+ TNC
TNC + PC
TNC + PC

PC + TNC
TNC + PC
PC - TNC

Transmission sequence on the radio port
Transmission on the radio port take place according to the following scheme:

1. The PC sends a “TX counter + I” command to the TNC. The TNC then keys the transmitter
(i.e. it activates the PTT line) and increments an internal counter. The PC also increments an
internal counter associated with that TNC. This counter serves the PC as a PTT indicator.

2. the PC sends the packet onto the ring

3. as soon as the TX delay value arrives in the TNC, it decides whether enough time has passed
already since the transmitter was keyed on. If not, keying up the transmitter is continued until
the specified amount of time passed. When the next data byte arrives, the transmission begins,
even if the whole packet has not arrived yet.

4. If the TNC receives the “start/end” command and the received checksum was bad, it must
send an ABORT sequence on the radio port.

5. As soon as the TNC completes transmitting a packet on the radio port, it sends a “TX counter
+ 1” command to the PC and decrements its internal counter. Because every packet is
preceded by a “TX counter + 1 ” command from the PC, the TNC always knows how many
packets will follow in the current transmission. The transmitter must stay keyed until the last
packet is sent.

6. The PC receives the “TX counter + 1” command from the TNC and decrements its
associated internal counter. If this counter reaches zero, then the transmission terminates.

The transmission of the channel data packets from the TNC to the PC takes place similarly, with the
exception that the PC does not acknowledge a received packet. Every packet the TNC receives on its
radio port is sent onto the ring, preceded by an “RX counter + 1” command.

Automatic configuration of the TNC addresses
Automatic configuration of the TNC addresses is achieved by the following simple scheme.

134



1 .

2 .

Since

the TNC receives an address command (1110 Iccc) and sets its own address to the value
contained in the command (the ccc bits).

the TNC increments the address contained in the command by one and retransmits the
command.

every TNC on the ring behaves according to these rules, TNC addresses are allocated
sequentially. The command transmitted by the last TNC and received by the PC contains the
number of connected TNCs.

KISS versus 6PACK
GPACK provides some advantages over KISS, most notably the ability to transmit real time data and
thus the ability to implement the channel access algorithm in the PC.

KISS achieves data transparency by prefixing some data bytes by an escape code. This means that
the transmission capacity needed to transmit a data packet depends largely on the contents of the
packet. In the worst case, twice the bandwith is needed. With 6PACK, the transmission capacity
needed is exactly predictable, if one neglects the real time commands inserted into the data stream.

If one continues the comparison and compares GPACK rings to KISS token rings, the advantages
of GPACK become even clearer. With a KISS token ring, the response time of the system depends
on the loading of the ring. Since the token ring does not transmit DCD and PTT states, each TNC
needs to implement its own channel access algorithm, and usually a rather primitive SlotTime/p-
Persistence algorithm is used. Also, there is no timing relation between the receipt of a packet over
the air and the arrival of the packet in the PC. The PC does not know when the packet is actually
sent. (Note by the translator: When the FRACK timer expires and the PC retransmits a frame, the
original frame may still wait for transmission, since the channel was busy all the time. Then the
retransmission of the frame produces additional unnecessary load on an already congested channel)

This usually leads to the transmission of frames with outdated sequence numbers and to strange
effects if one tries to implement a DAMA master on a KISS token ring. With high HDLC bit rates
and high load on the ring, the transmitter may be interrupted between packets, which leads to a much
increased collision probability.

GPACK provides no mechanisms which would allow the TNC to implement its own channel access.
Therefore, the channel access has to be done in the PC. This is a significant advantage, especially on
half duplex links.

Short response times, which are needed by, for example, a DAMA slave, cannot be achieved with
KISS. The transmitter keying is always delayed by the time it takes to transmit the packet on the
asynchronous serial interface.

With GPACK, real time data and channel data are distinguishable. Therefore, the delay of real time
data does not depend on the ring loading, and it can be calculated from the ring bit rate and the
number of TNCs on the ring. Each TNC delays the byte by between 10 and 20 bits, which is 260 to
520 ps at 38.4kBMs. The longest possible delay at 38.4kBit/s is therefore 8 * 520 ps = 4.2 ms.

This means that it does not take more than 4.2 ms to key the transmitter of a particular TNC, or to
communicate the DCD state to the PC. This way, even a ring of TNCs may be controlled quite
precisely, but the additional delay of a ring may increase the collision probability slightly on a half
duplex channel.

A flaw of GPACK is that the TX delay may be longer than requested. This happens every time a
packet is delayed more than the requested TX delay compared to its preceding “TX counter + 1”

135



command. However, measures should be taken to prevent the peer station from complaining about
the too long TX delay.

Last, but not least: Unlike with KISS, the TNC LEDs can be controlled by the host PC directly.
They are used just like the LEDs on the RMNC3 card.

Some Remarks from the translator

Figure 1

1 RxD

Figure 1 shows the wiring of a TNC ring.

FlexNet allows different channel access algorithms to be used. It may use a modified p-persistence
algorithm, DAMA, or OPTIMA in the future. FlexNet allows even multiple data rates and
modulation schemes to share one radio channel. For example, combined 1200 Baud AFSK / 9600
Baud FSK user accesses can be found in Europe, since it is often not possible to get different
frequencies for both modes, because the 70cm and 23cm bands are very crowded. In this case, a
1200 baud AFSK and a 9600 baud FSK modem are connected to the same transmitter in parallel.
Thus the channel access algorithm spans multiple channels. In PC/FlexNet, the channel access for
radio channels is done in the L2 kernel. So Ll drivers and GPACK TNCs must not implement their
own channel access algorithm.

TX delay is the time between keying the transmitter and starting to send the first packet. This time
allows the radio to start the transmitter. HDLC flags are usually sent during this time. TX delay is
specified in 1Oms units. FlexNet also monitors the TX delay of the other stations on the channel,
and complains if a station uses an excessively long TX delay (more than IOOms in excess to what
the transmitter needs). PC/FlexNet LI drivers and thus GPACK TNCs should listen for a series of
HDLC flags preceding a data packet and report the duration of this sequence in the TX delay’byte
of the received data packet. Note that only error free reception of the flags should be accepted. In the
unlikely event that the hardware does not support the measuring of the TX delay, zero should be
returned. Zero may also be returned for every packet other than the first of a particular transmission.
If, due to overload on the ring, the required TX delay cannot be met, the sending station must make
sure the peer does not complain about the long TX delay. This can be done by inserting an ABORT
sequence, for example.

Note that for the sake of fast retransmission of priority commands, hardware FIFOs in the
asynchronous serial interface should not be used.

The translator would like to thank Matthias Welwarsky DG2FEF and Gunter Jost DK7WJ for the
assistence, and Esther Oswald for correcting this translation.

Related literature:

[I] Karn, Phil KA9Q, and Mike Chepponis K3MC, The KISS TNC: A simple Host-to-TNC
communications protocol, 1990

[2] Welwarsky, Matthias DG2FEF, DAMA und OPTIMA, TheFirmware Version 2.7, 1994

136


