
APRServe: An Internet Backbone for APRS
Steve Dimse K4HG

http://www.aprs.net/k4hg.html
k4hgGtapr.org

Last year at the 1996 Digital Communications Conference I predicted t.hat within the next
year we would have a working nation-wide APRS backbone running on the internet. This
paper details the progress that. has been made t.owards t.hat goal.

At the time this is written (early August 1997), there is full time live data available from San
Francisco, Los Angeles, Nashville, Atlanta, Miami, and New Jersey. Several other sites offer
cox~tinuously updat.ed f i l e s cont.aining a l m o s t - l i v e d a t a .

Each of these sit.es functions independently, using a local WWW server to display the data
with javAPRS. The first step has been taken to link these sites into a seamless network with
a program I have written called APRServe.

In planning APRServe, I had several goals in mind.

1. The program should relay data from a local TNC onto the internet, just as the other
Internet. Gates (IGates) do.

2. The program should be able to connect, to a list of other servers to obtain live data from
other full time sites, and to interconnect with other copies of itself running in other
locations.

3. There should be an echo function to allow non-permanent. sources to connect t.o
APRServe, and add their data to the stream.

4. The data coming in from the various sources should be filtered to eliminate as much
redundant dat.a as possible.

5. There should be a buffer of data to allow the immediate transmission of all known
information to a newly connected client.

6. There should to be a way to remotely monitor the status of the server.

7. Local TNC data should be accessible either alone or as part of the merged stream of all
data.

Implementation

When I first envisioned this project, I intended to reuse much of t.he Java code I had writ.ten
for javAPRS. However, as I worked more with Java I came to realize that it is not yet mature
enough to handle the demands of a full time server application. I have written the program
in C++ under MacOS 7.6, using Apple’s Open Transport networking architecture for peak
performance. The resulting program is much faster and more st.able t.han a Java program

would have been, but is not transportable to other computer systems. However, while
writing the program I made every effort to make it as easy to port. as possible. This means no
fancy user interface, parameters are read from text files when the program initializes, and
status messages are displayed in a simple text window.

Networking

On startup, the program reads a file containing a list of full tim; data servers, and connects
to them. It monitors each connection, and if no data is seen in 15 minutes, the connection is
assumed to be dead, and a reconnection is attempted every 15 minutes until successful.

Multiple copies of APRServe can interconnect, sharing data among themselves. When other
full-time servers are available, a failure in one will not mean that the entire network
becomes unavailable. Also, t.he loads of bot.h c1ient.s and IGates can be shared between all
operating servers. At present, the protocol between the servers is quite simple. The only
difference between a client. port and an interconnect. port at present is that the data sent
out to an interconnect port does not contain any data that arrived by that port. (Without this
difference, data would echo back and fort.h bet.ween two sites.)

Data Echo

In an ideal world, there would be a full t,ime Internet. gat.e (1Gat.e) wit.hin a single digi hop of
everywhere in the country. However, since a full time IGate requires a permanent
connection to the internet, this coverage is unlikely t.o ever be attained. To fill in the gaps
between full time IGates, individual users of MaclWinAPRS will be able to send their TNC
data to APRServe and have it relayed to other internet users. This feature can also be used
for special events by having simple programs that send data from a TNC to APRServe.

Data Filtering

As anyone who has watched the raw data on a busy APRS net can attest, there is a lot of
redundant. informat.ion in the stream. Others are working on improvements to the TNC
digipeater code and protocol to reduce the redundancy. However, given that there may be a
large number of redundant. data streams feeding into APRServe, t.he possibi1it.y ex i s t s to
quickly overwhelm the average dia l up internet connect ion.

To address this I have developed a simple filtering routine that has low processor overhead
and good selectivity. As each string comes t.hrough APRServe, the program calculates a one
byte bitwise checksum and a character count on the data portion of the packet (that which
follows the I:‘, t.hereby excluding the callsign and digi info). The checksum and count are
combined with a character count of the data into a 16 bit integer hash code. For each data
st.ream the program maint.ains a buffer of a variable number (set at compile time) of packet
callsigns and their hash code. The incoming packet’s hash code is compared with those of
the packet.s in t.he buffer. If a match is found, it is confirmed by checking the callsign at
the start of the packet, and if confirmed the packet is discarded. If the packet is not in the
buffer, then it. overwrit.es the oldest dat.a in the buffer and the packet is passed on for
process ing.

25

The optimum size of the packet buffer is still to be determined. A larger buffer would cut out.
some longer period QRM, such as the parked vehicle t.racker with the GPS turned off that
repeats the same posit every minut.e. A small buffer, say 16 packets, cuts out all of the pings
bet.ween digis (a big problem in Miami) with much less processor overhead, and is what I
presently use.

In a test on 72 hours of data from the Miami LAN, this method was found to reduce the size of
dat.a bv about 60% with no information loss. Using a buffer of 128 packets only improved
the reduction to 68%.

Data Buffering

APRServe present.ly hears somewhere between 450 and 600 stations, depending on
propagation. However, many of these are heard infrequently, eithe*r because of distance to
the IGat.e, or the low t.ransmission rate used by fixed st.ations. To let a user see all the heard
stations immediately upon connecting to APRServe, the programs keeps an internal buffer
of heard stations. This buffer st.ores a single packet of each of three different types for each
station: weather, position, and other. Each incoming packet is parsed to determine it’s type,
and it overwrites the prior packet. When a new client. connects, the c0nt.ent.s of this buffer
are sent immediately to the client.

In order t
no packet

.o a s s
was

#ure t h e timeli ness of the data, every half hour the buffer is checked, and if
heard from a station in t.he prior 12 hours, t.he station is purged from the

b u f f e r .

Remote monitoring

Since the APRServe machine runs in a location I cannot easily access, I have added a status
port. When I connect t.o this port. the program reports the present status of the program,
including the current connections. Status messages are reported to the screen display and
t.o the status port. Some very simple commands can be sent to the program from this route as
well.

Client connection

To access the data, a client connects to the server using the TCP/IP Telnet. prot.ocol.
APRServe supports connections on two ports. Port 14579 (chosen for the APRS VHF
frequency) send only the local data from the TNC input. This keeps users from “drinking
from a firehose” when they only want to see Miami data. Port 1015 1 (the HF APRS
frequency) serves the full data stream.

presently there are two clients for t.he APRS Internet Network. javAPRS, being “born” t.o
networking, is fully functional now. MacAPRS, thanks to Apple’s Communication Toolbox, is
able, with a public domain tool, to connect to the network now. It. does not. handle the full
protocol at this time. WinAPRS is expected to catch up to MacAPRS once the Sprouls get a
chance. I expect that most “hard core” APRS users will prefer the Mac/WinAPRS client, as it.
is faster and has more features than javAPRS. javAPRS is more useful for casual users, and
most especially for newcomers and non-hams, since it is automatically downloaded and run
by the Web browser.

26

But is it Ham Radio?

I hear this a lot. Of course it is ham radio. Our hobby is about communicating and
experimenting; this system does both.

Ham radio needs to embrace new technologies, and concentrate on those aspects that are
unique. Let’s face it., a 200 mile 1200 baud packet. conversation fades compared to an internet
33.6 kbaud video chat halfway around the world. If ham radio continues to draw in upon
itself and celebrate past glory, it. will wit.her and die. We must show that we can utilize the
unique aspect.s of amateur radio, and merge them with existing technology to produce novel
communications systems.

Future plans

1. TIGER map relay. javAPRS has had the capability for the last year of using the TIGER map
server from the census bureau. The problem is that the securit.y rest.rict.ions of java prevent.
the use of data from servers other than the one from which the program is run. The
solution is to relay the map images through the same server that. t.he applet is loaded from.
Steve Boyle (KD6WXD) has this working on his server, and I will be adding the capability to
my system.

2. Intelligent routing of messages. I am st.rongly against. using the internet. for t.he
wholesale routing of traffic between different RF nets. However, the intelligent routing of
messages would greatly increase the usefulness of the Internet. backbone while only
minimally increasing the traffic. This year’s prediction is that next year I will be
presenting a DCC paper detailing how t.his nationwide messaging syst.em was designed and
implemented.

3. Improved interconnection. At present, multiple sites running APRServe all need to be
connected to the same IGates in order to be assured of access to the dat.a should anot.her
APRServe site go offline. The creates unnecessary load on bot.h the IGates and APRServe
sites. I am developing a negotiation protocol to allow the servers to split. up the 1Gat.e load
dynamically. In this way, each server maintains a list of the available IGat.es and APRServe
programs. When an APRServe site goes offline, this is sensed by the remaining APRServe
site(s), and the missing server’s load is split between the remaining site(s).

27

Appendix A
Annotated Bibliography of APRS Internet Sites

http://www.aprs.net/usa.html

d0cument.s describing the hardware
The Miami APRServe page, with links to various

and software more detail.

ftp://ftp.tapr.org/pub/tapr/SIG/aprssig/files This is t.he primary FTP sit.e for APRS
files. The latest. version of the Mac, Windows, DOS, and Java versions of the program are
available here, as well as t.he largest collect.ion of maps for all platforms.

http://web.usna.navy.mil/-bruninga/aprs.html Bob Bruniga’s (“The Fat.her of APRS”)
site contains many pages of almost live data. A must see site to understand APRS capabilities,

http://www.aprs. net/javAPRS.html A series of pages containing demonstrations of
javAPRS’s capabilities, as well as links to most of the other javAPRS pages I know about.

http://www.aprs. net/javAPRSprog.html The official documentation for javAPRS for those
people who are interested in adding javAPRS t.o their page.

http://www.aprs.net/find/ It. is possible to use the APRServe network to follow individual
stations in their travels. A new feature in javAPRS filters out all except specified stations.
The above URL lists those pages which I have created for individuals. For example,
http://www.aprs.net/find/k4hg.html shows my various stations, and
http://www.aprs. net/f ind/w7lus. html follows the exploits of long haul trucker and long
time APRSer Peter Gross. If you are on APRS and would like a page here let me know.

http://www.kcaprs.org The Kansas City APRS Group’s site is one of the more complete sites
for APRS info.

http://aprs.rutgers.edu Run by the Sprouls, containing the most up-to-date
documentation on Mac/WinAPRS, and also has an FTP server that contains latest
Mac/WinAPRS programs and lots of maps.

