
A Software Implementation for Federal Standard 1052 (Mil. Std. 188~1lOA HF Modems)

Robert McGwier, N4HY
64 Brooktree Road
East Windsor, NJ 08520.2438
Email: rwmcgwier@home.com

Abstract

Federal Standard 1052 is a modem designed for use on HF. It is specifically designed to overcome the
effects of propagation on HF to a certain degree. This paper describes the approach taken by the author
in a software implementation for the personal computer. The author has chosen to do the initial
implementation on Pentium and Dee-Alpha based computers running Linux.

Keywords: Serial HF Modem Federal Standard 1052 Linux PC

Introduction

In the late 1980’s, the author was one of several people who pushed digital processing and its myriad
applications and possibilities (McGwier, et. al. l-3). During the early years, our personal computers did
not have sufficient power to do the myriad tasks one needed to do in order to implement an extremely
sophisticated modem, such as Mil. Std.188.11OA. We were users of digital signal processing chips, and
while these DSP chips have gotten faster, our general purpose computer microchips have sky rocketed in
their power to accomplish difficult tasks.

During the 1990’s, we have seen the publication and distribution of many software packages
implementing increasingly complex signal processing software for a variety of applications, including a
demodulator for the Advanced Composition Explorer (Karn, 4), an HF demodulator designed by Peter
Martinez (Jacob, 5), and Forward Error Correction software (Kam, 6). The quality of the sound
equipment in computers has steadily improved, as has the drivers needed to efficiently utilize them. The
ubiquitous SoundblasterTM by Creative, Inc. has enabled much to be done with our computers.

Almost from the outset of our DSP efforts, there has always been the desire to produce a really high
quality HF modem for use by amateur radio operators. It has also always been clear that it was going to

take a really serious effort by a signal processing professionals to implement this in the short term.
There have been several commercial modems, many of them really good designs. We will not list them

here for fear of leaving one or more out. These being proprietary designs, none of them have been as
good a learning experience as they could have been. Since no serious signal processing professional has

come forward, and the long term has arrived, we will demonstrate an implementation of the Mil. Std.
188-1 lo-Al demodulator. It is written entirely in C, since I can’t force myself to learn C++. It uses

standard sound cards for the PC to deliver digital samples to the processor from your audio source and
to render audio for your radio. In this paper we will give a cursory overview of the design of the

demodulator. After receiving all of the necessary approvals from my employer, the source code will be
released under a Gnu Public License. It is the hope of the author that this will increase serious

experimentation on HF in a way that we have seen fostered by the release of the latest software design by
Martinez (6). Most of this paper will be about the actual standard with the exception of the highlights

from the demodulator. Another paper, will be done elsewhere with all of the gory details.

Federal Standard 1052 (formerly Military Standard 188-110-Al)

During the 1980’s, the US adopted a standard design for communications using the HF. Its design
considerations were primarily to allow more reliable communications on HF that were more reliable tha
standard FSK based RTTY signals and to make use of the rapidly advancing digital signal processing
chips. A block diagram of the design is a little complicated to follow but is included for completeness.

-1I INT ERL EAVE

I MATRIX #2
-

I INTERLEAVEbm I

t - - - l -
LOAD I

I

I

UNKNOWN
DATA

I
KNOWN

DATA
[PROBE) l-=---lSCRAMBLER

D A T A 4-9 \-ASYNC

Figure 1. A block diagram of the serial modems operations

The design adopted an 8 PSK signal at 2400 baud as bearer of information symbols. Since it is 8 PSK,

n

every baud carries three bits of data. Data is encoded by changing the phase by one of eight values: 0,
pi/4, pi/2, 3pi/4, and so on,, up to 7 pi/8. Since there are eight different angles we could change the phase
by, this allows us to transmit three bits of information. So theoretically, we could be sending 7200 bits
per second of data with this signal. This would not work very well on HF to say the least.

The first thing that we would find out is that we have no idea where in the data we are, and if we did,
which of the eight possible rotations of the data could be the correct one for our communications
purpose. That is, we would not know which of eight possible phases to use to decode the data. In order
to overcome this, we will transmit training data. This training data in the HF serial modem world and
elsewhere is called a preamble. We will send the following numbers, remembering that we send three
bits at a time. Thus we will transmit numbers between O-7. When we are sending SYNC, the switch S2
in figure one is in the SYNC position.

The synchronization pattern to transmit is

0, 1, 3, 0, 1, 3, 1, 2, 0, Dl, D2, Cl, C2, C3,O.

83

The three-bit values of Dl and D2 are very important to our communications channel. They choose at
what speed we will transmit data and simultaneously, how much protection we will enforce to help out
our data. When we are attempting to find a signal like this, we look for the pattern 0,1,3,0,1,3,1,2,0 in
the data being received and then assume we are getting a valid sync and then listen carefully to the rest
of the preamble. The rest of the preamble consists of several copies of everything but Cl,C2, and C3
being repeated. Cl, C2, and C3 are counters and count down to zero in a special way. After we get to
zero, we know that we are to immediately begin to decode what follows as the actual message. Why do
we do this? This allows us several chances at detecting that the signal is present. Once we do detect, we
are given several pieces of data that are known to us. When you are transmitting known data, it is much
easier to measure what effects the HF channel is having on your data, what frequency offset exists
between you and the transmitting station, and finally to determine the timing needed to synchronize the
receiver and the transmitter; This is the hardest aspect of all such demodulators to get right. Harris RF
though their way of doing the channel mitigation job was so nice that the patented it. We do things
differently here and is the real impetus for doing this work. We’ll return to that later.

While it is straightforward to understand 10,9,8.. . . 1,0 blast off for the Cl, C2, and C3, the purpose of
Dl, and D2 require more explanation. It is quite straightforward to understand one aspect of the
function of Dl and D2. The worse the channel conditions are, clearly, the slower we must transmit data
in order to be successful in getting our message across. But wait, I already said that we were always
going to send data at 2400 baud. How can we reconcile these two different views? In order to transmit
data at a lower effective rate, even though we are transmitting at 2400 baud, we will use redundancy to
help us conquer the noise and interference on the channel. An easy to understand (but dumb) kind of
redundancy comes when you just repeat what you are saying and voting on what is the most likely
message given the many copies. Here the redundancy comes from forward error correction and in some
cases additional redundancy from multiple copies, but we ltever majority vote. The first layer of
redundancy is done by a standard IBS rate ‘/z constraint length 7 convolutional code. See Figure 2.

Phil Karn, KA9Q, has done a very nice decoder for this exact code@). We have gladly stolen that code
under the GPL. Convolutional codes are extremely powerful tools for providing for noisy channels in
the unlikely (ever) case we have additive Gaussian noise. This is not a good model for HF noise. The
noise has a whitish component, but it is very impulsive. This causes burst errors. Convolutional codes
do not handle burst errors well in general. A clever device has been introduced to alleviate the fact that
the noise is highly correlated. One way would be to decorrelate the effects of the noise by spreading its
effects out in time. This is extremely effective and much of the new hot topic in coding, Turbo codes
can attribute their success in large part due to the very large decor-relators. These are called interleavers.
In Fed. Std. 1052, you take a block of data and apply the FEC to it. You then take the encoded bits and
permute their order in time. This has been studied in depth by mathematicians and engineers as to how
to do this “optimally.” Such a pemutation is used here. You then transmit the encoded+permuted data.
If burst errors occur now, their effects are spread out on the receiving end by applying the inverse of the
permutation or deinterleaver. This does a great job at decorrelating the noise. The faster you send data,
the more time you need to spread the bits out so larger permutations are used for the faster data. Each
interleaver takes exactly the same amount of time, irrespective of how fast the data is transmitted. On
good channels given a data rate, one uses a short interleaver. Given the same data rate, as the channel
degrades, one can go to a long interleaver to help. The disadvantage of the interleaver is the group delay
through it. Short interleaver are 0.6 seconds long and long interleavers are 4.8 seconds long!

And still, this is not enough. The channel is just too erratic or nonstationary for the estimate we made
about the channel during the preamble to be true or effective enough to help us for long. For this reason,
probes are sent interspersed amongst the encoded and interleaved data. These probes are known data.
Everyone has agreed ahead of time (in the standard) what the probes will be and when they will be sent.
This allows you to relearn the channel to some degree even in the midst of sending unknown data (the
message) to the receiver. This allows you to adapt much more quickly to known data in the channel and
to remove frequency offset., timing drift, as well as other channel effects. How much known data is
transmitted with the unknown data is a function of the D I, D2 values. Table 7 gives the values for the
“channel symbols” used for Dl and D2. Table 8 gives the actual bit values to these channel svmbols.
The thing to keep in mind when trying to understand why things are done this way, it is to allow for a
lousy channel where possible. Dl,D2 are streams of bauds. One using correlation against all of the
known values for Dl ,D2 in order to decide what is the most likely actual values of D 1 and D2 when you
are receiving them. In most of the cases amateurs will use, there will be 20 probes sent for every 20 data
bauds. This will give a pretty reliable 1200 bps. Only in the case of 2400 bps do you use 32 unknown
data bauds to 16 probes. Data rate, 2400 bps, is not used frequently by the commercial and government
users of this standard.

75 bps is handled very differently and is a miserable thing to code but worth every bit of the pain
involved in getting it right. There are no known data probes sent. Long sequences of data are sent for
each bit and cross correlation is used to determine which values are being sent. Since these have such
tight correlation peaks, they are very good data in and of themselves for learning about the channel and
attempting to produce good data . This mode will copy data that simply cannot be heard by the ear on an
interference free open band channel.

For Phil’s decoder to work, soft symbols (probabilities) have to be computed for each bit. One more
signal processing trick has made the demodulator better than it otherwise would have been. As you can
see from Figure 2., the data is not sent out in the order O,l,. . . as we move around the points on the circle
for the constellation values. In all cases but one, any two constellation values decode to a pattern of bits
that differ in at most one bit. Intuitively, this is done because the most likely error in a noisy
environment, full of clutter, is to mistake one neighbor for another. This is helped tremendously by
giving neighbors to the extent possible, very similar addresses. Let’s take an example. Suppose I
compute a soft symbol to be at 75 degrees with a magnitude of 0.75 and I am transmitting at 1200 bps so
I am using the (XY) or dibit symbols. Notice that I am above and to the right of the line from 135
degrees, through the origin, down to 315 degrees. Notice that both symbols here have the same first bit.
Thus when I compute a probability to send to Phil’s decoder, I am going to be pretty certain that the first
bit is a zero. I will be less certain about the second bit but I will claim it looks more like a one than a
zero because it is closer to 90 degree line. This ty?e of division of the circle in wayi; that allow you
compute prdmbilities where sane of the bits are really certain is called modified-Gray dec:oders. @VCBJ
the way we compute symbols, the probabilities fail right out,c

Some miscellaneous information is that the following scrambling sequence for the sync preamble shallI
repeat every 32 transmitted symbols:

7 4 3 0 5 1 5 0 2 2 1 1 5 7 4 3 5 0 2 6 2 1 6 2 0 0 5 0 5 2 6 6

85

This is added symbol by symbol to the phase of the transmitted data just before the preamble is sent out
on the air. In addition to this a randomizer is added to the data symbols and the probes (all zeros) just
before they are transmitted. This is a 480 long bit pattern, which is 160,3 bits symbols, which are added
just before transmission. They are derived from the shift in Figure 3 with initial fill
101110101101.

The Software Implementation

We will concentrate here on what is new in the demodulator since everything else is just implementation
details. In all demodulators for serial modems on HF, something must be done to overcome the effects
of the channel on the data. The performance requirements placed in Table 10 show that you must
overcome channel defects that are at times severe. In addition to this, we would also like to be more
robust in the face of in band, narrow interferers, where we have chosen to put an adaptive notch filter.
All demodulators to date, known to the author, attempt to solve the following problem. Suppose we are
giving a stream of data samples coming from an A/D. Let’s call this stream Y(t), where t = the integers
and correspond to sample times. Let X(t) be zero stuffed data, that is we will assume that the Y(t) are
being issued at a rate that is an integer multiple of the baud rate. We will put zeroes in the X(t) where it
is not time for a data baud. We assume the following model for the observed data:

Y(t) = Sumi=rLh(l)X(t-1) + W(t).

Here h(l) are the filter coefficients which we assume will model the channel operating on the data and
W(t) is noise and we assume it is additive.

It is typical to assume (whether or not it is true) that the filter h is approximately invertible. A filter is
then applied to the Y(t) that produces a soft symbol. Sometimes there is added to this feedback of the
previous decisions Xn(t). An adaption procedure is implemented to minimize the error between the
new soft symbol or block of symbols and the hard decisions for X. In some cases, no feedback is done at
all. In this case, not all of the intersymbol interference is removed that it is possible to remove. If Harris
uses in their radios, exactly what they have patented, then they are not doing decision feedback in the
traditional sense but are working their way in from the probes on either side of the unknown data.

Very bad things happen to the equalizer approach and other inversion approaches when the filter defined
by h has zeroes in its spectrum. All sorts of tricks have to played to fix the numerical instabilities
induced. Trying to invert the channel through an equalizer where the channel has a bunch of zeroes in
its spectrum is the mathematical equivalent of dividing by zero.

A better approach would be to take the point of view that we wish to guess putative data symbols, and
then find the best filter given this data estimate that will produce the observations Y(t). Given this new
filter estimate, one can then find better data. This sounds like an iterative procedure. It is. The first
step, given a filter find the data, is called Expectation. The next step of re-estimation of the filter
coefficients is called Maximization and the algorithm which implements it is commonly called the EM
algorithm as a result. On its face, it is too expensive. If one knew the channel response, a priori, one
could do the viterbi algorithm and this would indeed outperform the equalizer methods normally chosen
but it is very expensive. There is also no theoretically clean way to derive better filter coefficients in an
iterative fashion from the viterbi algorithm output other than least squares given the output data. This

coupled with the cost of producing the data makes it prohibitive. Lets take a different approach. For
completeness we give the following very dry mathematical rendering of what we do here approximately.
It is taken directly from the original paper by Dempster, et. al. (8). If you study the model we have
given for the A/D samples, Y(t), it is clear that the data values X(t) are hidden from our view by the
filter h, and the additive noise W(t). Since X are assumed to be independent in a certain way, they have
nice properties and are a type of mathematical stochastic process called a Markov Chain. This is an
extremely powerful concept and allows the analysis and algorithm which follow.

The EM Algorithm in general

Let X be the set of hidden variables, Y the set of observable variables, and Omega X and Omega Y the- -
set of values or sample space for these variables. The product of Omega Y can be-X and Omega-
thought of as the space of complete samples and Omega-Y the set of incomplete samples. If (x,y) is a
complete sample, then y is the observable part.

Let f(x, y I theta) specify a family of functions one of which governs the generation of complete samples
and let g(y I theta) specify a family of functions one of which governs the generation of incomplete
samples. The functions f and g are related by the following equation.

g(y 1 theta) = Integral - {x in Omega X}- f(x,y 1 theta) dx

The EM algorithm attempts to find a “value for theta which maximizes g(y I theta) given an observed y,
but it does so by making essential use of the associated family f(x, y I theta)” [Dempster et al., 1977 l(7).

EM can be thought of as a deterministic version of Gibbs sampling. EM operates on the means or modes
of unknown variables using expected sufficient statistics instead of sampling unknown variables as does
Gibbs sampling. Both EM and Gibbs sampling are used for approximation with incomplete data.

Suppose that x is the missing data and y is the observed data. It may be straightforward to calculate p(x,
y I theta) but not so easy to calculate p(y I theta).

Define Q(theta I theta’) as follows:

Q(theta 1 theta') = E[log p(x, y 1 theta) 1 theta', .y]
where x is the random variable and we are taking the expectation with respect to the probability density
p(x I theta’,y).

The EM algorithm works as follows

1. Set i to 0 and choose theta-i arbitrarily.
2. Compute Q(theta I theta-i)
3. Choose theta i+l to maximize Q(theta I theta i)
4. If theta i .-1- theta- -i+l, then set i to i+l and return to Step 2.

where Step 2 is often referred to as the expectation step and Step 3 is called the maximization step.

The generalized EM (GEM) algorithm is the same except that instead of requiring maximization in Step
3 it only requires that the estimate be improved.

Here is a proof sketch showing that each iteration of EM actually improves the current estimate theta.

We start with the following simple identity (see the Appendix at the end of this document):

log p(y 1 theta) = log p(x, y, 1 theta) - log p(x
and take expectations of both sides treating x as a random variable with distribution p(x

log p(y 1 theta) = E[log p(x, y 1 theta) 1 theta',
E[log p(x 1 theta, y) I theta',

(1)
We note without proof that the second term in (1) is minimized when theta = theta’ (see
below).

Now consider any value theta” such that

E[log p(x, y 1 theta") I theta', y] >
E[log p(x, y I theta') I theta', y]

theta, y)
I theta’,y).
Yl -
Yl

Exercise 1

and note that if we replace theta’ by theta” we increase the first tern-r in (1) while not increasing the
second term so that

p(y I theta") > p(y I theta')
thereby improving our current estimate.

In general, computations required for EM can be quite difficult requiring complex integrations to
compute the required expectations and perform the maximization. In the remainder of this section, we
consider a special case of EM well suited to distributions in the exponential family.

Consider the problem of learning a model for the unsupervised learning problem in which X and Y are
boolean variables, Y depends on X, and X is hidden. In this case, complete samples (x,y) are drawn from
{ 0,l } *2, incomplete samples are drawn from { 0,l }.

The hypothesis space is defined by the following network structure.

0 ----> 0

x Y
Here are the parameters for the above structure.

{theta(x) = Pr(X=x) : x in {O,l}}

Iphi (x,y) = Pr(Y=y I x=x) : (x,y) in {0,1)*2}

Here is a graphical model representing the learning problem.

The boxed part of the
0 ----> 0 ----> 0 <---- 0 model indicates a plate

theta(X) I X Y 1 phi KY) (see [Buntine, 19941)

I N I representing N samples.

I I
Here are some samples with missing values indicated by underscores.

X Y
e--w-----

Note that in the general case the
values for X could be either partially
or completely missing in the data.

88

We represent the parameter distributions using beta distributions. Let’s assume that Beta[n,m] is the
distribution that corresponds to out having observed n O’s and m 1’s. For each parameter distribution, the
associated counts correspond to sufficient statistics. In the case of the theta parameters, we have

n(x) = Sum {s in S}-- (1- {Value(s,X) = x>)
where S is the set of samples comprising the data, s is a variable ranging over samples, Value(s,V) is the
value assigned to the variable V in sample s, l-(Value(s,V) = v> = 1 if Value(s,V) = v, I_(Value(s,V) =
v} = 0 if Value(s,V) != v. In the case in which there is no missing data, we have

xi(theta(1)) S) = Beta(n(O),n(l))

Similarly, for the phi parameters, we have

d&Y> = Sum {s in S}- (1- {Value(s,Y) = y} 1- {Value(s,X) = x})

and, again in the case of no missing data, we have

xi(phi(l,l) 1 S) = Beta(n(l,O),n(l,l))

In the case of missing data, instead of using the sufficient statistics which we don’t have, we use the
expected sufficient statistics to iteratively assign estimates to theta and phi. This iterative process
proceeds in two steps.

In the first step, called the expectation step, we compute the expected sufficient statistics as follows.

E(n(x) 1 S,theta,phi) =
Sum-{s in S} Pr(X = x 1 Y = Value(s,Y), theta, phi)

E(n(x,y) 1 S,theta,phi) =
Sum-{s in S} (Pr(X = xJY = Value(s,Y),theta,phi)l-{Value(s,Y) = y})

The required computations can easily be carried out for distributions in the exponential family.

In the second step, called the maximization step, we set theta and phi to their mode conditioned on the
expected sufficient statistics. In this case, finding the mode is trivial. For example, if the prior on
phi(1,l) is Beta[alpha-1 ,alpha-21, then we’re looking for the mode of

Beta[alpha_l+E(n(l,O)IS,theta,phi),alpha_2+E(n(l,l)~S,theta,phi)]

which is just

-w--m-

[alpha-l+E(n(l,O)lS,theta,phi) +
alpha 2+E(n(l,l)IS,theta,phi)]-

The formulation of EM given here is perfectly suited to working with distributions in the exponential
families, including the Bernoulli, Poisson, normal, gamma, beta, multinomial, and Dirichlet
distributions.

89

Our Implementation

Chrystomos Nikias and Minn Shao (9) gave nice implementation in a demodulation problem which is
almost like ours. They assumed real data (ours is complex), they assumed all unknown data, we make
use of the fact that our data is surrounded by known data in all the modes except 75 bps. There, the
problem is more like theirs but we still have several things going for us. They make several simplifying
assumptions that do cost you performance but allow the algorithm to be adapted to real time processing.
Rather than assume that all moments of the distributions are necessary above, they assume that only first
and second moments and pairwise conditional expectations are needed in a clever way.

This simple but powerful assumption allows one to approximate the total likelihood problem given
above in a meaningful and implementable way. The viterbi algorithm mentioned above, given N
observations, L length filter, and M symbols in our constellation costs O(NML) operations and O(ML)
memory. As you can see, it pays to allow filter length’s L, which are inadequate in order to gain the
power of the dynamic program. This is prohibitively expensive. While the full EM algorithm greatly
reduces the memory requirement, the cost is still O(NML). Under the assumptions in (9), which we have
experimentally tested, this cost drops to O(NM2)+ O(LN2) operations and O(N2) memory. This is
completely feasible and is similar in cost to the Harris patented equalization algorithm while in no way
resembling. It uses approximate total likelihood instead and reestimates filters and data together an
algorithm derived from appropriate use of Bayes rule and a Markov model of the data.

Results so far

The demodulator works on the air. We will demonstrate it at the conference. The 75 bps version should
outperform all known amateur radio modems with a cost. The occupied bandwidth is a full SSB
bandwidth but greatly reduced powers are required for adequate communications.

Figure 1. Rate ?h K=7 convolutional code
T1(X)=x6+~4+~3+x+l
T2(x)=x6+x5+x4+x3+1

91

Table 1. Error-correcting coding

DATA RATE (b/s)
4800
2400
1200
600
300
150
75

EFFECTIVE CODE RATE
(no coding)
l/2
l/2
l/2
114
l/8
l/2

METHOD FOR ACHi!EVhG THE CODE RATE
(no coding)
Rate l/2
Rate l/2 code
Rate l/2 code
Rate l/2 code, repeated 2 times
Rate 112 code, repeated 4 times
Rate l/2-____.. --

Table 2. Interleaver matrix dimensions
LONG INTERLEAVER SHORT INTERLEAVER

Bit rate (b/s) Number of rows Number of columns Number of rows Number of columns
2400 40 576 40 72
1200 40 288 40 36
600 40 144 40 18
300 40 144 40 18
150 40 144 40 18
75 20 36 10 9

Data rate (b/s)
2400
1200
600
300
150
75

Table 3. Bits-per-channel symbol
Number of bits fetched per channel symbol

3
2
1
1
1
2

Table 4. Modified-Gray decoding at 4800 b/s and 2400 b/s --...-...-..-.-.--~-~{
INPUT BITS I:

i
I

First bit Middle bit Last bit Modified-Gray ;l
ri

decoded value
ii

0 0 0 000
0 0 1 001
0 1 0 011
0 1 1 010 ‘Ib.:

1 0 0 111
1 0 1 110
1 1 0 100
1 1 1 101

-

92

Table 5. Modified-Gray decoding at 1200 b/s and 75 b/s
INPUT

-
BITS

:t

First bit Last bit Modified-Gray decoded value
0 0 00
0 1 01
1 0 11
1 1 10 i:ii

CT==-==----- Table 6. Bits-p-channel symbol - - - - . -----_-
Ii Data rate (b/s)

-z‘jt

ti
Number of bits fetched per channel symbol j;

2400 3
$

>t Ii
2

ji1:::$
I ii
1

‘i
ii\t

I
ji;;

2 Tm*pwm___E_.__~~___.__._Y..._I._UYI....~...~..UY..YIUIYU.YI..~~~~~U~.I.-U~.~~~....~~~.~~...~.~~~~.~..~.....~......~.....“.Y.....Y-.U-.-U~U.-...I..~--Y....L~IUI.~.I-^-.Y..~.....--YII....-.~.~..-....~....,..U-....Y.-.Y...................-~......... ,

f dewymbols Dl and D2 -n...-_ ---...-.....- _-.--- .-_-_..--..--_I----.-..--I- .-----A.

BIT RATE
4800
2400 (secure voice)
2400 (data)
1200
600
300
150

SHORT INTERLEAVE
Dl D2
7 6
7 7
6 4
6 5
6 6
6 7
7 4

LONG INTERLEAVE
Dl D2

4 4
4 5
4 6
4 7
5 4 . .

75 7 5 5 5 --.I:t--w-.---.--s--.-~- - --n-r~~m-- -..-._-I_m- - ..--_ w---- ---- FT..----.T-.-.” i

Table 8. Channel symbol mappingfor sync preamble
CHANNEL SYMBOL TRIBIT NUMBERS ii

000 (0000 0000) repeated 4 times
I;
1:

001 (0404 0404) repeated 4 times
j;
ii

010 (0044 0044) repeated 4 times :iIi::::
011 (0440 0440) repeated 4 times

;:jt1;
100 (0000 4444) repeated 4 times ?tiii
101 (0404 4040) repeated 4 times

‘!
:

110 (0044 4400) repeated 4 times
j:

!
111 (0440 4004) repeated 4 times

I j
.--UI..II-’ __L

93

Table 9. Data phase waveform characteristics 1
Information Coding Channel Bits/channel 8-phase No. of unknown No. of known 1
rate rate rate symbol symbols/ 8-phase 8-phase iI

channel symbol symbols symbols [
4800 (no 4800 3 1 32 16 ~t 1iit.

coding) I I
2400 l/2 4800 3 1 32 16 I:It
1200 l/2 2400 2 1 20 20 Ii i:‘i
600 l/2 1200 1 1 20 20 I/i
300 l/4 1200 1 1 20 20 /j
150 l/8 1200 1 1 20 20 rf 1: it:7s 112 150 2 32 all 0 Ii i

Table 10. Fed Std. Serial (single-tone) mode minimum_performance.P
j User bit rate Channel paths Multipath (ms) ding BW (Hz) [‘I

4800 1 Fixed
4800 2 Fading 2 05 .
2400 1 Fixed
2400 2 Fading 2 1 18 1.0x lo-5 (i
2400 2 Fading 2 5 30 l-Ox 10-3 //

2400 2 Fading 5 1 30 1.0x 1o-5 jj
1200 2 Fading 2 1 11 1.0 x l(f tj
600 2 Fading 2 1 7 1.0x 1o-5 j
300 2 Fading 5 5
150 2 Fading 5 5

5

94

6 (110)
315-

LEGEND:
00...315’= PHASE (DEGREES)

O...f = TRIBIT NUMBiRS

@OO)...(lll) = THREE-BIT CHANNEL SYMBOLS

@O)...(fl) = TWO-Bfl CHANNEL SYNSOLS

(s)...(l) = ONE-BIT CHANNEL SYMBOLS

Figure 2. Symbol Values

MIDDLE
MS6 BIT LSB

NOTES:

1. INITIAL SETTING SHOWN

2. SHIFTED 8 TIMES BETWEEN OUTPUTS

Figure 3. Linear Feedback Shift Register for scrambling

95

Reference

Digital Signal Processing and Amateur Radio, Thomas A. Clark, W3IW1, and Robert W.
McGwier, N4HY Sixth Computer Networking Conference Proceedings, 1987.
DSP IModems: It’s Only SofhYare, Robert W. McGwier, N4HY, Sixth Computer Networking
Conference Proceedings, 1987.
The DSP Project Update, by Thomas Clark, W3IWI and Robert McGwier, N4HY, Seventh
Computer Networking Conference, 1988.
Ace Demodulator, http://people.qualcomm.com/karn/code/acedemod, Phil Kam, KA9Q
PSK31 Modem, http://aintel.bi.ehu.es/psk3l.html, Eduardo Jacob, EA2BAJ
Forward Error Correction Codes, http://people.quaIcomrn.com/karn/code/fec/, Phil Kam,
U9Q
Federal Standard 1052, http://ntia.its.bldrdoc.gov/-bing/fs-1OWhtm (formerly MS- 188-
1 lOAl).
“Maximum Likelihood from incomplete data via the EM algorithm”, A.P. Dempster, N.M. Laird,
D.B. Rubin, Journal of the Royal Statistical Society, Vol. B-39, pp. l-37, 1977
“An ML/MMSE Estimation Approach to Blind Equalization”, Shao, M., Nikias, C., IEEE
Transactions on Communications. IV, 1994, ISBN O-7803- 1775-O/94, pp. 569-572.

Biography

Robert McGwier is N4HY. He has published numerous articles in ham radio journals and participated
in many AMSAT and TAPR projects. He wrote the demodulators in the AEA DSP2232 and Quiktrak
tracking software for AMSAT. He participate in the Microsat project and was a member of the board of
directors for AMSAT. While having been mostly absent from ham radio for the last 8 years, he has
concentrated on family, Boy Scouts, Golf, and work. Bob resides with his wife, Shann, N2HPE and
three children at 64 Brooktree Road, East Windsor, NJ. He is rwmcgwier@home.com.

96

http://people.qualcomm.com/karn/code/acedemod
http://aintel.bi.ehu.es/psk3l.html
http://people.quaIcomrn.com/karn/code/fec/
http://ntia.its.bldrdoc.gov/-bing/fs-1OWhtm

