A PS/2 Keyer: Using Keyer Paddles to Emulate a PS/2 Keyboard and Mouse

David Bern, W2LNX
Montgomery College, Rockville, Maryland
w2lnx@arrl.net

This paper describes my experience learning to program a
Microchip PIC® microcontroller in C. The program for this
project emulates a PS/2 keyboard and a PS/2 mouse using CW
keyer paddles for input.

INTRODUCTION

In the past several years, I became interested in learning how to program Microchip PIC
microcontrollers and I began to look for an interesting project. As an experienced C
programmer, I knew nothing about PIC microcontroller programming. My criteria for
the project was that it needed to have a well defined input, a well defined output, and
the circuit needed to consist solely of a PIC microcontroller with some LEDs. And,
importantly, it needed to be written in C.

At the 26" DCC, Milt, WSNUE and George, N2APB introduced their NUE-PSK digital
modem [Cram 2007]. The NUE-PSK is a small device that provides portable PSK31
operation without the use of a personal computer. However, it does require a PS/2
keyboard for entering text. It occurred to me that it could be more portable if the large
PS/2 keyboard is replaced with CW keyer paddles. A PIC microcontroller would
translate CW input sent on the paddles into output that comes out of a standard PS/2
keyboard. Hence, I found the idea for the project for which I was looking. I would write
a program that runs on a PIC that emulates a PS/2 keyboard using keyer paddles for
input. Later on in the project, I wondered if it was possible to emulate a PS/2 mouse
with only two switches and no other moving parts.

BACKGROUND
Morse code

Morse code input is defined in the ITU recommendation on the international Morse code
[M.1677] and is further described in an article in Wikipedia [Wiki M]. The CW character
and word timings needed for this project are the length of time of a dah relative to a dit,
the length of time between dits and dahs in a letter, the length of time between letters

and the length of time between words.

The PS/2 protocol

The output of a PS/2 keyboard and a PS/2 mouse uses the PS/2 protocol and was
originally described in the IBM PS/2 computer reference manuals [PS/2 k] and [PS/2 m],
respectively. Articles on the Web about the PS/2 protocol [Chap pl, the PS/2 keyboard
protocol [Chap k], and the PS/2 mouse protocol [Chap m] were most helpful.

The PS/2 interface on personal computers with six pin mini-DIN keyboard and mouse
connectors uses the PS/2 protocol. This is a two way synchronous protocol used to
communicate between a host and a device [Chap p]. A host, typically, is a personal
computer and a device, typically, is a keyboard or a mouse. In addition to a clock line
and a data line, there is a five volt line and a ground line. The PS/2 protocol uses the
clock line and the data line for sending data. The frequency of the clock is within the
range of 10 to 16.7 kHz. Data is sent as an 11 bit frame starting with a zero start bit,
the eight data bits with the least significant bit first, an odd parity bit and a one stop bit.
The device always generates the clock signal. The host can request to communicate with
the device. The device responds by generating the clock signal for the host to send its
data to the device. Then, the device acknowledges that it received the complete data
from the host.

The PS/2 keyboard protocol

Each key on a PS/2 keyboard device is identified by its unique scan code. Scan code set 2
[Chap s2] is commonly used today and it was originally developed by IBM for the AT
keyboard. The keyboard device sends the host the scan code of a key that is pressed; a
break code and its scan code is also sent when that key is released. The host computer
can communicate with the keyboard device. For example, the host lights the keyboard
Caps Lock LED when the Caps Lock key is pressed.

The PS/2 mouse protocol

The standard PS/2 mouse device sends the host its movement and button information as
a three byte packet. Mouse movement information is sent as a relative position change
and is a signed nine bit two's complement binary number. Also, a standard PS/2 mouse
has a left, a middle, and a right button. Initially, the host communicates with the mouse
to configure it after the host has determined whether the mouse is a standard PS/2
mouse or an enhanced PS/2 mouse.

THE PROJECT
Learning the PS/2 protocol

To gain a good understanding of the PS/2 protocol, I needed to see the data and the clock
lines at the wire level on a PS/2 cable. I assembled a six pin mini-DIN connector
breakout board from parts [Spark 1] [Spark 2] obtained from SparkFun Electronics, a
wonderful resource for digital electronics hobbyists. Sample PS/2 protocol data came
from an original IBM AT computer PS/2 keyboard and a Logitech PS/2 three button
mouse. I purchased an inexpensive logic analyzer from Saleae [Saleae]. Since the PS/2
data bits are sent in “reverse” order, i. e. least significant bit first, I created a form to
record the start bit, eight data bits, parity bit, stop bit and any acknowledgment bit.
Later in the project, I purchased a USBee SX logic analyzer [USBee] since it can decode
the PS/2 protocol for the host and the device.

PIC18F4520 prototyping boards

I needed to choose a PIC microcontroller for my project. Rick, W2GPS, develops and sells
time related products using PIC microcontrollers and he recommended that I use the
18F series PIC microcontrollers. I purchased the PIC18F4520 development kit [CCS kit]
from CCS: it includes a prototyping board, and most valuably, an exercise booklet to help
get started. Note that the PIC18F4520 prototyping board and exercise booklet can be
purchased separately from the complete kit. Other prototyping and demonstration
boards I have tried that use the PIC18F4520 are the PICDEM 2 Plus demonstration
board from Microchip [PICDEM], the Dem2PLUS demonstration board from Sure
Electronics [Dem2PLUS], and the Olimex 40 pin bare prototyping board with RS-232
[Spark 4] from SparkFun. A USB version of the Olimex 40 pin bare prototyping board
[Spark 5] is also available.

I assembled a prototyping board by using a breadboard [bread] purchased from Beginner
Electronics, a PIC18F4520 [18F4520] microcontroller in the PDIP form factor, two six
pin mini-DIN connectors, an ICD programming connector [Spark 3] and a serial TTL to
RS-232 adapter [HVW Tech]. Five volt power was connected to the prototyping board
with positive temperature coefficient (PTC) resettable fuse devices [Spark 6] at both
mini-DIN connectors and at the ICD programming connector. These devices protect the
prototyping board and power supply sources against an accidental short circuit.

meen

Figure 1. my development breadboard

In Figure 1, the two mini-DIN connectors are connected to a personal computer using a
PS/2 keyboard and mouse to USB adapter [Inland] and two PS/2 male-to-male cables
[PS/2 m/m]. The ICD connector is connected to a PIC programmer with a short cable. As
luck would have it, the receive and transmit pins of the RS-232 adapter matches the
corresponding input/output pins on the PIC18F4520. Note the probes connected to the
logic analyzer.

The circuit in Figure 2 consists of essentially one component, the PIC18F4520
microcontroller. The PS/2 keyboard connector, the PS/2 mouse connector, and the CW
keyer paddles are connected to port B pins of the PIC to take advantage of the internal
pull-up resistors provided within the PIC. No external clock crystal or resonator is
needed since the internal 8 MHz clock within the PIC is used instead. Not shown are the
test LEDs and the usual 0.1 uF power bypass capacitors connected between the Vpp and
Vss power pins of the PIC. Further wiring details are provided in the wiring list in the
appendix.

PIC development tools
For the PIC programmer, I used the Microchip PICkit™ 2 programmer/debugger

[PICkit]. The PICkit 2 is inexpensive and was adequate for this project. It has a
convenient power management feature: it provides power to the development board if it

detects that the board has no power. Also, power to the board can be turned on and off
from a software menu item.

+5V
VDD
ICSP ~MCLRN pp —=| -MCLR\VPP RBO ——= PS/2 KEYBOARD CLOCK
ICSP CLOCK —| PGC RB1 [=— PS/2 KEYBOARD DATA
ICSP DATA. —{ PGD
RB2 —— PS/2 MOUSE CLOCK
RB3 [=— PS/2 MOUSE DATA
PIC18F4520
DIT PADDLE —{ RB4 X SERIAL OUT
RX e—o
DAH PADDLE —| RB5 SERIALIN
Vss

Figure 2: abbreviated schematic. Test LEDs and power supply
bypass capacitors are not shown.

After evaluating free demonstration versions of several PIC C compilers, I chose the CCS
C [CCS C] compiler since it appears to best hide hardware details of PIC microcontrollers
with with library functions. The port input/output library functions are easy to use and
interrupt service routines are easy to write. Also, Rick, W2GPS, recommended the CCS
C compiler since he uses it extensively for his work.

For the actual development environment, I preferred to use the Microchip MPLAB®
integrated development environment (IDE) [MPLAB] instead of the one provided by CCS
with their C compiler suite. Note that the less expensive CCS PCH C compiler [CCS
PCH] instead of the full CCS C compiler suite is sufficient for this project since PCH
integrates with the MPLAB IDE.

Learning PIC C programming

My first goal was to repeatedly blink an LED on and off and to display “hello, world” on a
HyperTerminal serial terminal window. I read several introductory books [Benson 2008]
[Helle 2008] [Bates 2008] on PIC C programming to get me started. [Helle 2009]

[Tbrahim 2008] [Barnett 2004] are other good books to read. Also [N & V] and [Celler]
have good articles on PIC microcontroller development.

For program testing and debugging, I learned to use LEDs and timing pulses on an
output pin to observe with a logic analyzer. I used printf () to print configuration and
debugging information during program development and testing. And, I quickly learned
not to introduce a timing error in the code by putting a print£f () in the wrong place.

Writing the program

This program is organized into three software modules. The first module decodes CW
characters keyed in with CW keyer paddles. The invalid CW character dih dih dah dah
is used as a command code character. Some command codes are keyboard Enter,
keyboard Caps Lock and switch to mouse mode. Entering six or more dits in a row
generates the appropriate number of backspace characters to the beginning of a word
just entered. CW is translated into ASCII text characters using a lookup table. The dit
paddle and dah paddles are connected to pins RB4 and RB5, respectively, of port B to
take advantage of the provided change-on-input interrupt feature. This allows the PIC
to go to sleep and consume practically no power while waiting for an interrupt to occur
when a keyer paddle is pressed. Keyer paddle switch contact bounce was probably most
challenging problem of this program. A paper on switch bounce [Ganssle 2008]
convinced me that CW keyer paddles without any switch contacts such as the CW
Touchkeyer paddles [PIPADW] are necessary for this project. An internal timer
interrupt is used to measure time between dits and dahs. Using port B input interrupts
and timer interrupts simplified the code.

The second module emulates a PS/2 keyboard using the PS/2 protocol. ASCII characters
are translated into PS/2 keyboard scan codes using a lookup table. The lookup table has
every character on a PS/2 keyboard including those not found in Morse code. It was a
thrill to first see the letter Q generated by the PIC microcontroller appear in a NotePad
text editor window.

The third module emulates a PS/2 standard three-button mouse. It generates PS/2
mouse button clicks and mouse pointer movement from keyer paddle input. Clicking, i.
e. briefly pressing, the left keyer paddle generates a left mouse button click and,
correspondingly, clicking the right keyer paddle generates a right mouse button click.
Clicking both paddles simultaneously generates a middle mouse button click. Mouse

pointer movement is controlled by pressing and holding the keyer paddles: the left
paddle controls the left-right mouse pointer movement; the right paddles controls the up-
down mouse pointer movement. Pressing both paddles moves the mouse pointer along
one diagonal direction or the other diagonal direction. Hence, there are eight possible
mouse movement directions and it is possible to move the mouse pointer in an octagon.
Pressing for longer than about three seconds causes the mouse pointer to move faster on
the screen. A command code, i. e. two left clicks followed by two right clicks, switches the
program back to keyboard mode. It was fun to see the mouse pointer move by itself in a
continuous circle on the screen during initial testing. It took about two weeks of testing
and experimenting with different mouse pointer movement policies to get something
reasonable to control mouse pointer movement.

Testing during software development was not difficult. A PS/2 keyboard and mouse to
USB adapter, a logic analyzer and LEDs were used. During program startup, the PIC
would send a PS/2 keyboard and a PS/2 mouse device reset code via the PS/2 to USB
adapter to the host computer. The computer would then respond with PS/2 device
configuration command codes. This made it unnecessary to repeatedly plug and unplug
the adapter USB connector in and out of the USB port on the computer. A logic analyzer
was used for understanding the host to device initial configuration dialog and for
debugging my generated PS/2 keyboard scan codes and PS/2 mouse packets. Logic
analyzer probes were connected to the PS/2 keyboard and the PS/2 mouse clock and data
lines. Also, additional mark pulses were generated at points of interest in the code to
identify logic analyzer output of interest. LEDs connected to pins on port A indicated
program activity. A general status LED, an LED for the PS/2 keyboard port, and an
LED for the PS/2 mouse port were used.

Future enhancements

The current version uses a PS/2 keyboard and mouse to USB adapter to connect the
PIC18F4520 microcontroller to the host computer. My next version using a PIC18F4550
will eliminate the need of the PS/2 to USB adapter since it contains an internal USB
interface.

Availability
I am releasing the source code for this project using the GNU General Public License,

version 2 (GPLv2). Please contact me at w2lnx@arrl.net to obtain a copy of the
source code and additional documentation.

CONCLUSION

This was an interesting and fun project. I hope that this paper inspires and motivates
others to get started with a Microchip PIC microcontroller project. A microcontroller
project of modest complexity can be developed incrementally by systematically testing at
every step of the way. Microchip PIC microcontrollers, programing tools and software
development tools are readily available and are relatively inexpensive.

This project may be of possible use to people who have limited physical mobility and
cannot use a conventional keyboard or a mouse. This could allow them to type on a
computer or to manipulate a mouse pointer using just two switches.

ACKNOWLEDGEMENTS

Adam Bern, KB3KVD, for being my CW keyer paddles mouse tester

Jim Johns, KAOIQT, for enlightening conversations about Microchip tools

Joe Julicher, N9WXU, for suggesting the PICkit 2 programmer

Larry Wolfgang, WR1B, for convincing me to work on this project

Milt Cram, W8NUE, and George Heron, N2APB, for developing their NUE-PSK modem
Rick Hambly, W2GPS, for giving me guidance

Steve Bible, N7THPR, for encouraging me to write up this project for the next DCC

July 31, 2009

APPENDIX: WIRING LIST

PIC18F4520-I/P

pin nhumber | pin hame connected to | pin name function
1 -MCLR/VPP PICKit 2 ICSP VPP/-MCLR | [ICSP program and reset
39 PGC PICkit 2 ICSP ICSPCLK ICSP clock
40 PGD PICkit 2 ICSP ICSPDAT ICSP data
PICKit 2 ICSP VDD Target | [+5V
PICkit 2 ICSP VSS ground
33 RBO keyboard PS/2 |CLK PS/2 keyboard clock
34 RB1 keyboard PS/2 | DATA PS/2 keyboard data
keyboard PS/2 |VCC +5V
keyboard PS/2 |GND ground
35 RB2 mouse PS/2 CLK PS/2 mouse clock
36 RB3 mouse PS/2 DATA PS/2 mouse data
mouse PS/2 VCC +5V
mouse PS/2 GND ground
37 RB4 dit paddle
38 RB5 dah paddle
paddle ground ground
25 X RS-232 DCE <- serial output
26 RX RS-232 DCE -> serial input
RS-232 DCE + +5V
RS-232 DCE - ground
2 RAO PS/2 keyboard LED
3 RA1 PS/2 mouse LED
6 RA4 status LED
7 RAS5 mark pin
11 VDD +5V
32 VDD +5V
12 VSS ground
21 VSS ground

note: each LED is connected in series to a 330 ohm resistor

REFERENCES and RESOURCES

[18F4520] Microchip Technology Inc., PIC18F2420/2520/4420/4520 Data Sheet:
28/40/44-Pin Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt
Technology (document DS39631E), 2008, http://www.microchip.com

[Barnett 2004] Barnett, Richard H., Sarah Cox, Larry O'Cull, Embedded C
Programming and the Microchip PIC, Clifton Park, New York: Delmar Learning,
2004, ISBN: 9781401837488

[Bates 2008] Bates, Martin P., Programming 8-bit PIC Microcontrollers in C: with
Interactive Hardware Simulation, Oxford, UK: Newnes Press, 2008, ISBN:
9780750689601

[Benson 2008] Benson, David, C What Happens, Using PIC® Microcontrollers and
the CCS C Compiler, Hayden, Idaho: Square 1 Electronics, 2008,
http://www.sq-1.com/cwhtoc.html

[bread] Beginner Electronics, Breadboard and Wire Kit,
http://www.beginnerelectronics.com/beginner/Products.php

[CCS C] CCS, Inc., Compiler Exclusively for Microchip PIC® MCUs,
http://www.ccsinfo.com/content.php?page=compilers

[CCS kit] CCS, Inc., PIC18F4520 Development Kit,
http://www.ccsinfo.com/product_info.php?products_id=18F452kit

[CCS PCH] CCS, Inc., PCH Command-line Compiler for PIC18 MCU parts,
http://www.ccsinfo.com/product_info.php?
cPath=Store Software&products id=PCH_ full

[Cellar] Circuit Cellar, The Magazine for Computer Applications,
http://www.circuitcellar.com/

[Chap k] Chapweske, Adam, The PS/2 Keyboard Interface, 2003,
http://www.computer-engineering.org/ps2keyboard/

[Chap m] Chapweske, Adam, The PS/2 Mouse Interface, 2003,
http://www.computer-engineering.org/ps2mouse/

[Chap p] Chapweske, Adam, The PS/2 Mouse/Keyboard Protocol, 2003,
http://www.computer-engineering.org/ps2protocol/

[Chap s2] Chapweske, Adam, Keyboard Scan Codes: Set 2,
http://www.computer-engineering.org/ps2keyboard/scancodes2.html

[Cram 2007] Cram, Milton, WSNUE, and George L. Heron, N2APB, NUE-PSK31: A
digital modem for PSK31 field operation...without using a PC!, TAPR and ARRL

26th Digital Communications Conference 2007 Proceedings. Hartford, Connecticut:
ARRL.

[Cram 2008] Cram, Milton, WSNUE, and George L. Heron, N2APB, NUE-PSK Digital:
Modem Enables PSK31 field operation... without using a PC!, QEX, March/April
2008. Newington, Connecticut: ARRL.

[Dem2PLUS] Sure Electronics Co., Hybrid of PIC18F4520 Dem2PLUS and Low
Power Demo Board, http://www.sure-electronics.com/product/goods.php?
id=24 and http://www.sureelectronics.net/goods.php?id=24

[Ganssle 2008] Ganssle, Jack G., A Guide to Debouncing, Rev 3: June, 2008,
http://www.ganssle.com/debouncing.pdf

[Helle 2008] Hellebuyck, Chuck, Beginner's Guide To Embedded C Programming:
Using the PIC® microcontroller and the HITECH PICC-Lite™ C Compiler,

Milford, Michigan: Electronic Products, 2008, ISBN: 978-1438231594,
http://www.elproducts.com/embeddedcbook.htm

[Helle 2009] Hellebuyck, Chuck, Beginner's Guide to Embedded C Programming -
Volume 2: Timers, Interrupts, Communication, Displays and More, Milford,

Michigan: Electronic Products, 2009, ISBN: 9781448628148,
http://www.elproducts.com/embeddedcbook2.htm

[HVW Tech] HVW Technologies, RS-232 Driver Module - DCE,
http://www.hvwtech.com/products view.asp?ProductID=289

[Tbrahim 2008] Ibrahim, Dogan, Advanced PIC Microcontroller Projects in C:
From USB to RTOS with the PIC 18F Series, Oxford, UK: Newnes Press, 2008,
ISBN: 9780750686112

[Inland] Inland Pro USB Converter USB to PS/2 Keyboard and Mouse, SKU:
919712, http://www.microcenter.com/single product_results.phtml?
product_id=0230515

[M.1677] International Morse code, RECOMMENDATION ITU-R M.1677,

International Telecommunication Union, 2004,
http://www.godfreydykes.info/international%20morse%20code.pdf

[MPLAB] Microchip Technology Inc., MPLAB Integrated Development

Environment, http://www.microchip.com/stellent/idcplg?
IdcService=SS_GET PAGE&nodeId=1406&dDocName=en019469&part=SW007002

[N & V] Nuts & Volts Magazine, The Magazine for the Electronics Hobbyist,
http://www.nutsvolts.com/

[PIPADW] CW Touchkeyer touch paddles, model PIPADW,
http://www.cwtouchkeyer.com/P1PADW.htm

[PICDEM] Microchip Technology Inc., PICDEM 2 Plus, Part Number: DM163022,
http://www.microchip.com/stellent/idcplg?
IdcService=SS_GET PAGE&nodeId=1406&dDocName=en010072

[PICkit] Microchip Technology Inc., PICkit 2 Development Programmer/Debugger,
http://www.microchip.com/stellent/idcplg?
IdcService=SS_GET_ PAGE&nodeId=1406&dDocName=en023805

[PS/2 k] Keyboard 101- and 102-Key, IBM Personal System /2 Hardware Interface
Technical Reference - Common Interfaces, 1990,
http://www.mcamafia.de/pdf/pdfref.htm

[PS/2 m] Keyboard and Auxiliary Device Controller, IBM Personal System /2

Hardware Interface Technical Reference - Common Interfaces, 1990,
http://www.mcamafia.de/pdf/pdfref.htm

[PS/2 m/m] Cable Club, 6 Ft PS/2 Keyboard & Mouse Interface Cable (Male/Male),

part: BC20277-6, http://www.cableclub.com/keyboard-mouse-interface-
cable-malemale-p-797.html

[Saleae] Saleae LL.C, Saleae logic analyzer, http://www.saleae.com/logic/

[Spark 1] SparkFun Electronics, MiniDIN 6-Pin Connector, SKU: PRT-08509,
http://www.sparkfun.com/commerce/product_info.php?products_id=8509

[Spark 2] SparkFun Electronics, MiniDIN 6-Pin Connector Breakout, SKU:

PRT-08651, http://www.sparkfun.com/commerce/product_info.php?
products_id=8651

[Spark 3] SparkFun Electronics, Adapter board for Microchip ICD and ICD2,
http://www.sparkfun.com/commerce/product_info.php?products_id=193

[Spark 4] SparkFun Electronics, 40 Pin PIC Development Board, SKU: DEV-00021,
http://www.sparkfun.com/commerce/product info.php?products_id=21

[Spark 5] SparkFun Electronics, 40 Pin PIC Development Board with USB, SKU:

DEV-00022, http://www.sparkfun.com/commerce/product_info.php?
products_id=22

[Spark 6] SparkFun Electronics, PTC Resettable Fuse, SKU: COM-08357,
http://www.sparkfun.com/commerce/product_info.php?products_id=8357

[USBee] CWAV, Inc., USBee SX logic analyzer, http://www.usbee.com/sx.html

[Wiki M] Morse code, Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/wiki/Morse code

