
The 29th Annual ARRL and TAPR
Digital Communications Conference

DSP Short Course
Session 3: How to use DSP

Rick Muething, KN6KB/AAA9WK

Half Time Recap

• We’ve surveyed the roots of DSP and some of
the tools we’ll need to work with DSP.

• We’ve looked at how to implement filtering
using DSP (FIR, IIR and frequency selective
filters)

• Now its time to look at how DSP is used to make
“components” and how to put these together
and implement something useful!

• The next two sessions will cover the more
popular DSP “components” and techniques and
some of the “tricks of the trade” of DSP

Session 3 Overview

• “Radio Math”
• Common Trig Identities
• DSP “Flow Chart”
• Common DSP “Components”
• Filtering
• Oscillators ,Mixers
• Modulators
• Tone Detectors
• Example 1 “DSP Crystal Radio”
• Example 2 HF Channel Simulator
• Example 3 RTTY Decoder using PC Sound Card

“Radio Math”

• We all know traditional radios use components
(inductors, capacitors, transistors, Xtals etc)

• These components are arranged in “circuits” to
perform some operation on the signal at the antenna.

• The operations we do (tuning, detection, mixing,
amplification, filtering etc) all can be expressed
mathematically (not always simple math!)

• In DSP we will do something equivalent:
– Use DSP to make components …we’ve already looked at

filter “components” in Session 2
– Use the digital computer and DSP techniques to perform

the math operations.

Important Trig Identities

http://en.wikipedia.org/wiki/List_of_trigonometric_identities

Trig Identities ad nauseum at:

Mixing

Modulation and Phase Detection

=

http://en.wikipedia.org/wiki/List_of_trigonometric_identities
http://en.wikipedia.org/wiki/List_of_trigonometric_identities

DSP Flow Charts

• Just like a radio has a block diagram and a
schematic showing the function and
interconnections of its various components we
need a similar DSP Signal Flow chart for DSP
implementations.

• The DSP Flow chart shows:
– what DSP components are used

– How data flows between these components

– May also have some information about the
sequence of some DSP operations

Example DSP Flow Chart

This chart describes how data flows and interacts with various DSP components
and processes to implement an 8PSK Pragmatic Trellis Code Modulation Decoder

Continuous or “Batch” DSP Flow

• Often in DSP implementations we must trade off
continuous processing vs. batch processing. The
type of processing done may be dictated by the
application, the hardware or the DSP routines
used.

• The DSP Flow chart should help identify which
operations are done in batches (e.g. Typical FFT
or Read Solomon decode) and which are done
“continuously” on the data stream (e.g.
Filtering).

Common DSP Components
In Session Two we surveyed Filters: FIR, IIR, Frequency Sampling
There are other specialized filters but most work similar to these.

Some other important DSP Components:

Numerically Controlled Oscillator

Oscillator Parameters
Starting Phase
Sample Rate
Frequency
Sine only or Sine + Cos

NCO

For i = 0 to Number of Samples -1
SineOut(i) = Sin(i * 2 * Pi * Freq /Sample Rate + Starting Phase)
CosOut(i) = Cos(i * 2 * Pi * Freq/Sample Rate + Starting Phase)

Next I

Sine Out samples

Cos Out samples
(optional)

Typical NCO Code:

Important note: With double precision
floating point we get oscillators with fine
frequency resolution and accuracy!

http://en.wikipedia.org/wiki/Numerically-controlled_oscillator

http://en.wikipedia.org/wiki/Numerically-controlled_oscillator
http://en.wikipedia.org/wiki/Numerically-controlled_oscillator
http://en.wikipedia.org/wiki/Numerically-controlled_oscillator

Common DSP Components

Balanced Mixer

I and Q samples of
Signal to be mixes

MIXER

For j = 0 to Number of Samples -1
USB Out I (j) = NCOCos(j) * I(j) – NCOSine(j) * Q(j)
USB Out Q(j) = NCOSin(j) * I(j) + NCOCos(j) * Q(j)

Next j

Upper Sideband
samples

Lower Sideband
samples

Typical Balanced Mixer Code:

I

Q

Sine Cos
(from NCO)

The Trig identities are used to
generate these sum and
difference functions.

Reverse Signs for opposite sideband!

Common DSP Components

Phase Modulator

Sample Rate,
Samples/symbol,
Number of carriers (OFDM)

O MOD Phase Modulated
samples

Typical Phase Modulator Code:
RealFFT Freq(i) = Cos (Phase Angle)
ImagFFTFreq(i) = Sin (Phase Angle)
Do INVERSE FFT to get time samples (I and Q)

Phase
Modulation
Data Clever use of FFT can generate multiple carrier

Modulation (frequency bins I,j, …) Simultaneously
With just ONE inverse FFT !

Remember the FFT can go back and forth from Time to Frequency!!!

Common DSP Components

Tone Detector

Input samples
(In Noise)

Tone

Detector

F0 Detect

Typical Phase Modulator Code:
Compute FFT of (Input samples)
For j as integer = 0 to n

Mag(j) = Sqrt(RealF(j) ^2 + ImF(j) ^2)
If Mag(j) > MaxMag then ToneDetect = j

next j

F1 Detect

F2 Detect

Fn Detect

The more input samples we process the better the S/N

How could we easily
reduce the CPU load
of this simple routine?

Simple DSP “Crystal Radio” Project
For Many of us …. The schematic of our first radio!

Trivia Question: What animal part was this
Semiconductor Diode sometimes called?

Simple DSP “Crystal Radio” Project
Now the DSP Radio!

High Speed
A/D

FIR Band
Pass Filter

Envelope
Detector

IIR Low
Pass Filter

PC Sound
Card

Sample at
Minimum of
2x highest
Freq

Number of
Taps a function
of selectivity
and bandwidth
desired

Env =
Sqrt(I^2 + Q^2)

Simple IIR
low pass
will suffice

Channel
Selection

With Only a few hundred dollars in parts
A humming DSP CPU and 3 months of
Programming we can duplicate a $2 radio!

It works…but what
are some of the
challenges with
this approach???

HF Channel Simulator
In working with HF/VHF channel propagation a channel simulator is an invaluable
Tool that allows measurement and comparison of modems and performance.

C.C. Watterson developed a HF channel model that is fairly easy to implement
Using DSP. (The Watterson Model)

We can use this model and standard CCIR channel definitions to build
A very useful DSP based channel simulator application on a PC.

Output
Samples

(e.g. received Signal)

White Gaussian
Noise

Input
Samples

(e.g. Modem output)

Time varying
Tap coefficients

http://www.hfindustry.com/HF%20Simulator/chansim.pdf

http://www.hfindustry.com/HF Simulator/chansim.pdf

VAC HF/VHF Channel Simulator

Input Stream
Selection

List of all
Installed Sound
Devices and
VAC

(Virtual
Audio
Cables)

Tap coefficient
Generator

hj(t)

User Selected
S/N Ratio

User Selected
CCIR Channel Type

(multi path poor, flat fading etc)

User Selected
Stream Source

Wave
Stream

Output Wave
Stream (VAC compatible)

One nice feature of this approach is
The channel simulator can be made
to look just like a “cable” connecting
a source and sink of sound data

(paper for DCC 2011???)

Watterson
Propagation Model

RTTY Decoder Using PC Sound Card
(Nominal 45.5 baud, 170Hz shift)

Some challenges here! (not uncommon with DSP!)
For true synchronous detection we would like the shift to be
an integral number of the baud rate. 170/45.5 = 3.736
Since we can’t change these #s we’ll have to compromise here!

The sound card only samples at certain standard rates…
(most common: 8000, 11025, 12000, 44,100, 48000, 96000)
Our sample rate should be an integer multiple of the baud rate
None of the standard rates is an exact multiple of 45.5
48000/45.5 = 1054.94 1055 samples/symbol is close enough.

But 1055 is not a power of 2 so we’ll have to handle that somehow!
But if it were always easy everyone could do it!

RTTY Decoder Using PC Sound Card

PC Sound
Card @
48000 sps

Goertzel Tone
Decoder
N= 1055
m= 30
(1364.9 Hz)

Symbol
Framing

Signal Slicer
And auto
threshold

Goertzel Tone
Decoder
N= 1055
m= 34
(1546.9 Hz)

Baudot to
ASCII
Decoder

PC Tuning
Display

Note feedback path
To keep symbol
Correctly framed

Note trick using Goertzel
Tone Detector which can
Implement arbitrary
Length transform

Real world DSP solutions often involve hardware
And user interface issues and require
“tricks of the trade” to make them practical!

Session 3 Summary
• We saw that DSP uses math functions to model the familiar

functions of radio components and circuits.
• We examined Common Trig Identities with links to many more.
• We saw how the DSP “Flow Chart” is analogous to the familiar

schematic diagram.
• Several Common DSP “Components” were described in addition

to the filters covered in session 2.
• Example 1 “DSP Crystal Radio”
• Example 2 HF Channel Simulator
• Example 3 RTTY Decoder using PC Sound Card

• Now in Session 4 we’ll look into some of the finer points of DSP
and some of the necessary “Tricks of the Trade” as the way we
make DSP really practical!

