
33

The H.A.R.C. Database and Visualization Utilities

Joshua D. Katz

New Jersey Institute of Technology

William Engelke

University of Alabama

Dr. Nathaniel Frissell

New Jersey Institute of Technology

Jul 31, 2017

Abstract

HamSCI’s goal is to construct a symbiotic relationship between the formal research community

and the Amateur Radio community. To facilitate this transfer of knowledge HamSCI must pioneer

technologies that allow scientists to easily obtain and understand Amateur Radio data. This task

necessitates the creation of warehousing and visualization facilities that allow scientists to easily

understand and make use of our data sets. We are currently testing a database and visualization

toolkit designed to handle our existing 2 billion-record long QSO log. This data set represents a

compiled version of data gathered by the Reverse Beacon Network, WSPRNet, and PSKReporter.

Our goal is to build a robust, fast, and queryable front end to the massive, and currently underuti-

lized, data sources created by Amateur Radio operators.

Keywords— Database, HamSCI, Contest Logs

1 Introduction
When investigating a phenomena it is often difficult to find easily accessible and understandable

metrics and data sources that can be used for an analysis. There is also a large amount of testing

and validation that must be done to any data source before it is acceptable to use. Because of this it

is often difficult to convince researchers to consider using data sources that are not already charac-

terized or understood. This presents an initial challenge to the adoption and use of data generated

by Amateur Radio operators. We have taken steps to perform initial validation and support to re-

verse this trend and make Amateur Radio data more attractive to the research community. To do

this we have developed a database to abstract the different storage schemas of various data sources,

investigated visualization utilities, and worked towards a better understanding of the data source as

a whole. This reduction of complexity and initial phase of verification makes Amateur Radio data

much more attractive to the research community.

2 Implementation
The HARC, or the HamSCI Amateur Radio Communications, Database is an SQL schema for

storing extremely large QSO logs. We are currently testing our schema within MariaDB which is

a popular open source fork of MySQL that aims to improve documentation and performance while

also adding important features. MariaDB was also chosen for its existing robust clustering facilities

34

that will allow us to deploy mirrored copies of the HARC database across multiple universities and

institutions who wish to use the data source. Deploying in this fashion provides high availability, a

deployment characteristic of extremely fault-tolerant systems, and quicker access times.

Figure 1: Demonstration of the HARC database storage and query scheme.

The storage schema for the tables used within the database are described in Figure 1. This

schema was built to be as efficient and simple as possible. This system also allows us to still

identify where each record comes from due to the “source” fields in both the “radio_locations” and

“radio_spots” tables. Along with this analysis HamSCI has begun investigating data visualization

techniques that can show scientifically interesting information in Amateur Radio systems. These

systems consist of DX Display and other internal visualization tools.

2.1 Storage Size
In HARC there is no single table that contains all information about a contact. It would be much

simpler to implement, understand, and test a database where every bit of information was stored in

each record but unfortunately such a database would perform poorly and be difficult to maintain.

The performance impact of storing repetitive data is not initially evident. Most people only look

for the first order effects of large tables. As an exercise we will engage in a thought experiment

discussing the implications of storing repetitive values in each record we store. For our example

we will focus on storing the transmitter and receiver’s callsigns with every QSO we write to disk.

When an SQL server is instructed to store a record it will write what ever you tell it on to the disk.

If you attempt to store 1 million rows with the same values the database will, by and large, not

make any attempt to compress that data; it will write all 1 million copies of that data. Because of

this storing callsigns in the communication logs causes your database size to balloon.

1 SELECT AVG(LENGTH(c a l l s i g n)) FROM r a d i o _ o p e r a t o r s ;

2 +−−−−−−−−−−−−−−−−−−−−−−−+

3 | AVG(LENGTH(c a l l s i g n)) |

4 +−−−−−−−−−−−−−−−−−−−−−−−+

5 | 5 .1047 |

6 +−−−−−−−−−−−−−−−−−−−−−−−+

Finding average length of callsign.

From this query we can find that the average length of the callsings observed by the Reverse

Beacon Network is approximately 5 characters. Each character is approximately one byte stored to

the disk and there is a one byte length attached to each string.

1 SET @RBN_SPOTS_SOURCE = . . . ; /∗ Source ID f o r RBN ∗ /

2 SELECT COUNT(∗) FROM r a d i o _ s p o t s

3 WHERE s o u r c e = @RBN_SPOTS_SOURCE;

35

4 +−−−−−−−−−−−+

5 | COUNT(∗) |

6 +−−−−−−−−−−−+

7 | 577801090 |

8 +−−−−−−−−−−−+

Number of spots in the RBN from 2009 to 2016.

From this query we can see that within the RBN we have observed 577,801,090 spots. If we

were to store both the transmitter and receiver callsigns for all of those spots we would need to store

approximately 7 GBs of callsigns. This excludes any metadata or indexing that the SQL storage

engine would append to this. We can improve this situation by storing only a unique number for

each callsign and keeping a mapping of said unique number to callsign.

1 SELECT MAX(o p e r a t o r _ i d) FROM r a d i o _ o p e r a t o r s ;

2 +−−−−−−−−−−−−−−−−−−+

3 | MAX(o p e r a t o r _ i d) |

4 +−−−−−−−−−−−−−−−−−−+

5 | 1146669 |

6 +−−−−−−−−−−−−−−−−−−+

Number of distinct transmitter callsigns observed by the RBN from 2009 to 2016.

From this we can see that there are only 1,146,669 distinct callsigns heard by the RBN. If

we stored an UNSIGNED INT instead of the 5 character string from before we would only store

approximately 3 GBs of data. This represents more than a 50% savings in storage space.

Some may say that this optimization is not needed because storage space is cheap. This is

incorrect. Storage space is cheap but the width of your rows on disk does not only effect storage

size. If you store a large row onto the disk you will eventually need to read or seek past that row at

some point during a query execution. If your rows are overly bloated with unneeded information

this will cause a performance impact that will either manifest itself as wasted CPU cycles, decreased

disk transfer rates, or a low hit rate for the disk cache.

2.2 Indexing
Relational databases can only improve speeds for specific use cases by use of indexing. An index

is a data structure that contains meta data about where on the disk specific data is stored. This is

functionally equivalent to the alphabetization of a dictionary. Although dissimilar, the outcomes

are the same. When you want to look up a word you do not need to read every word from the

dictionary, in order, to find your word. You can flip to the section of the dictionary that you know

should contain your word because of knowledge you already have about the organization, and

location, of the data and your dictionary. Because of this looking up the definition of a word, or

a set of words, is much faster. However if you need to look up the definition of every word you

will not see any performance benefits from the ordering of the dictionary. This is the same with

the database. Only queries that do not aggregate information about the entire database, and instead

only look for a subset of records in the database, can be optimized with an index. Other types of

queries will not see any speed improvement and will actually be slower if an index is applied.

2.3 Table “radio_operators”
The “radio_operators” table contains a mapping of every operator’s callsign to our internal unique

operator ID. This internal ID is much smaller than a callsign when stored in the SQL databases.

This will also allow us to make better use of different types of indexing, such as foreign keys, to

provide much faster lookups for specific queries. This has not been implemented yet.

36

2.4 Table “radio_locations”
The “radio_locations” table contains the location of every operator ID we find. We also store a date

when each location was obtained in the “occurred” column. This allows us to estimate the location

of an operator at any given time.

1 SET @ i n t e r e s t i n g _ o p e r a t o r = . . . /∗ F i l l i n wi th O p e r a t o r ID ∗ /

2 SET @ i n t e r e s t i n g _ d a t e t i m e = . . . /∗ F i l l i n wi th a d a t e t i m e ∗ /

3

4 SELECT ∗ FROM r a d i o _ l o c a t i o n s

5 WHERE o p e r a t o r _ i d = @ i n t e r e s t i n g _ o p e r a t o r

SQL query obtaining an operator’s likely location at a specific date.

2.5 Table “radio_spots”
The “radio_spots” table contains status information for every communication observed by any

network we have incorporated into our database. Any information that is repetitive, or will appear

in multiple contacts, has been factored out into other tables. We have only included information

which will change from contact to contact. Some examples of this information would be the signal

to noise report (“snr”), the frequency (“freq”), when the contact was heard (“occurred”), what

network this report is from (“source”) and the communication mode (“mode”). While not enough

information is within this column to do all types of analysis we only store these columns because

they are numeric. This will allow SQL engines to efficiently store and query this data. For the

rest of the information you must query other tables. These extra tables are much smaller then the

main dataset. These other tables can be joined to our main dataset within SQL to provide a more

complete column set.

Figure 2: An automated propagation report system fed from multiple spotting networks. Built and run

by William Engelke.

37

3 Data Visualization Tools: DX Display
DX Display is a real time service that automatically generates graphs that quantify Amateur Radio

activity. This tool offers quick, and comprehensive, access to information from multiple Amateur

Radio networks. By looking at the metrics displayed by DX Display the research community can

easily pick out interesting phenomena, better understand how the data correlates to what is currently

happening in the world, and have access to quick plotting utilities. DX Display is the first system

to be affiliated with HamSCI which makes use of DX Cluster and WSPRNet spots in real time.

4 Data Visualization Tools: Python Data Analysis Envi-
ronment
The Python data analysis environment is a thriving ecosystem of utilities and libraries. Many

optimizations have been made to improve speed of complex numerical computations. The most

common numerical analysis and scientific computing libraries available to scientists today in the

Python software stack are SciPy, NumPy, Matplotlib, Seaborn, and Pandas. These libraries have

built in facilities to handle column-based data sources. Pandas, a data loading and column process-

ing framework, also supports directly grabbing data from SQL databases.

1 from s q l a l c h e m y i m p o r t c r e a t e _ e n g i n e

2 from pandas i m p o r t r e a d _ s q l

3

4 db = c r e a t e _ e n g i n e (’ mysql+mysqldb : / / USERNAME@HOSTNAME/DATABASE’)

5

6 # Load l a s t 15 m i n u t e s o f s p o t s .

7 s p o t s = r e a d _ s q l (" " " SELECT

8 (SELECT c a l l s i g n

9 FROM r a d i o _ o p e r a t o r s

10 WHERE o p e r a t o r _ i d = r s . t x) a s t x _ c a l l ,

11 t x _ r l . g r i d ,

12 (SELECT c a l l s i g n

13 FROM r a d i o _ o p e r a t o r s

14 WHERE o p e r a t o r _ i d = r s . rx) a s r x _ c a l l ,

15 r x _ r l . g r i d ,

16 mode , sn r , f r e q , o c c u r r e d

17 FROM r a d i o _ s p o t s a s r s

18 INNER JOIN r a d i o _ l o c a t i o n s as t x _ r l

19 ON t x _ r l . o p e r a t o r _ i d = t x

20 AND t x _ r l . o c c u r r e d = (SELECT o c c u r r e d

21 FROM r a d i o _ l o c a t i o n s

22 WHERE

23 o p e r a t o r _ i d = t x _ r l . o p e r a t o r _ i d AND

24 o c c u r r e d >= r s . o c c u r r e d

25 ORDER BY o c c u r r e d DESC

26 LIMIT 1)

27 INNER JOIN r a d i o _ l o c a t i o n s as r x _ r l

28 ON r x _ r l . o p e r a t o r _ i d = rx

29 AND r x _ r l . o c c u r r e d = (SELECT o c c u r r e d

30 FROM r a d i o _ l o c a t i o n s

31 WHERE

32 o p e r a t o r _ i d = r x _ r l . o p e r a t o r _ i d AND

33 o c c u r r e d >= r s . o c c u r r e d

34 ORDER BY o c c u r r e d DESC

35 LIMIT 1)

36 WHERE

37 o c c u r e d >= (UTC_TIMESTAMP () − INTERVAL 15 MINUTE) ; " " " , con=db)

38

Loading data from HARC into Pandas Dataframe.

This example has been expanded and implemented in the most verbose and “correct” SQL

query that represents this request. Many optimizations can be made to improve access times of the

results of this query as you likely can avoid a JOIN in this situation. It is also possible to reduce

the requested data from the database. You may not always need the TX and RX callsigns. You may

not always need locations. When interfacing with this system it is recommended to only download

data that you need and to provide as many filtering criteria for the data before obtaining it. For

example if you need locations to be present for you analysis it is preferred to request the “INNER

JOIN” of your two tables as this will automatically remove items that do not have any location data

associated with them. If you would only like 10,000 spots “LIMIT” your query.

5 Benefit
Amateur Radio QSO logs are difficult to understand for the uninformed scientist. HARC brings a

friendly abstraction to the table, specifically one which scientists already understand. We present

QSO logs as instead being a list of radio transmissions that were heard in various places. We

provide ways to graph these transmissions. We also have begun to define what is normal, what is

interesting, what is obvious, and what is erroneous within the data sources. HARC removes the

complexities and peculiarities of each individual data source by presenting a clean and uniform

method for accessing the accumulated data of the Amateur Radio community.

6 Summary
To encourage researchers to use Amateur Radio data sources we have begun the long process of

implementing, validating, and testing multiple systems that will enable scientists to more easily

understand these data sources. We have done this by creating an abstract data acquisition layer,

beginning analysis of the data, and building tools to help better understand the changes caused by

ionospheric effects, space weather, and anthropogenic effects on Amateur Radio operations. We

hope to deploy our data visualization tools and the HARC database to universities involved with

the HamSCI investigation.

