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A New Algorithm for the Estimation of the Frequency
of a Complex Exponential in Additive Gaussian Noise
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Abstract—This letter presents a new algorithm for the precise
estimation of the frequency of a complex exponential signal in ad-
ditive, complex, white Gaussian noise. The discrete Fourier trans-
form (DFT)-based algorithm performs a frequency interpolation
on the results of anN point complex fast Fourier transform. For
largeN and large signal to noise ratio, the frequency estimation
error variance obtained is 0.063 dB above the Cramer–Rao Bound.
The algorithm has low computational complexity and is well suited
for real time applications.

Index Terms—Discrete Fourier transform (DFT), fast Fourier
transform (FFT), frequency estimation, interpolation.

I. INTRODUCTION

T HERE has been substantial prior work in the use of the
fast Fourier transform (FFT) to estimate the frequency of

a time sampled complex exponential signal in additive white
Gaussian noise [1]–[4]. This letter presents a new discrete
Fourier transform (DFT)-based method to obtain a very accu-
rate frequency estimate [5]. In particular, the coarse estimate
is the frequency corresponding to the maximum amplitude
FFT coefficient. Recursion can be done either by frequency
translating the signal or frequency modifying DFT coefficients.
Frequency modifying the DFT coefficients is suggested in [7].
A frequency error function is defined in terms of two modified
DFT coefficients. The first interpolated frequency estimate is
the initial frequency estimate plus the output of the frequency
error function. Two new modified DFT coefficients are then
obtained. The second interpolated frequency is then the first
interpolated frequency plus the output of the frequency error
function. This iterative computation can be continued until
a fixed point solution is obtained in which the input and the
output of the frequency error function are zero. Convergence
occurs for the third frequency interpolation for the particular
frequency error function considered in this letter.

II. COARSEFREQUENCYESTIMATION

The received signal plus noise, , is given by

for (1)

where is a complex exponential signal with frequency
given by and is a sequence of inde-
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pendent, identically distributed complex Gaussian random vari-
ables with zero mean and variance. It is desired to process

, to obtain an estimate of, where
is a fixed and unknown parameter, . The sampling

frequency is , and . The signal-to-noise ratio (SNR)
is defined as

(2)

Rife and Boorstyn [1] described a technique for the estimation
frequency using the FFT. The frequency corresponding to the
maximum amplitude FFT coefficient is chosen as a frequency
quantized approximation to the maximum-likelihood estimate.

Define

and

where, and is the point complex FFT
operator. Following Rife and Boorstyn [1], a coarse frequency
estimate, , may be obtained from,

(3)

Assuming that the SNR is sufficiently high, it is highly probable
that . This is an above
threshold condition [1]. A fine interpolation may be obtained to
improve the frequency accuracy.

III. DFT I NTERPOLATION

Define the modified DFT coefficients asand as

(4)

(5)

A number of possible functional forms, which mapand
to an estimate of the error in , are possible. The functional
mappings contain a particular class [5] characterized by

for (6)
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Fig. 1. Normalized frequency discriminant for = 2 as a function of
normalized frequency error.

The parameter defines the shape of the frequency discriminant
function as a function of

The application of the frequency discriminant function with
is investigated in this letter. This function is

(7)

Fig.1shows asafunctionof
for .

FromFig.1, it isobvious that for ,
the discriminant yields a good approximation to the actual
frequency error. This characteristic may be effectively utilized
through the use of recursion.

IV. RECURSIONALGORITHM

The algorithm is defined as

(8)

For , define

(9)

(10)

(11)

(12)

The interpolated frequency estimate is .

V. TRUNCATION OF THERECURSIONALGORITHM

is the implicit solution of, . is the
th interpolation. In practice, is sufficiently close to

to be used as the interpolated frequency estimate. When
, will have reasonably large

error. However, and therefore
will have small error and will be close to zero. Therefore,

will be essentially the implicit solution to . The
recursion may be truncated to the evaluation of.

VI. REDUCTION OF THERMS ERRORUSING RECURSION

The rms frequency estimation error due to additive noise,
using the proposed frequency discriminant, decreases sharply
for . Since the iterative solution adaptively
produces a frequency estimate, which is close to this condition,
the recursive use of the discriminant produces a frequency esti-
mate with small rms error. By means of the recursion, the dis-
criminant converges to a minimum rms error condition.

VII. PERFORMANCE OF THEALGORITHM

Using the Taylor series [6], at high signal to noise ratios, the
performance of the algorithm has been shown to be [5],

(13)

where, is the mean square value of and is a
uniform random variable in the interval .

The Cramer–Rao lower bound (CRLB) on the unbiased fre-
quency estimator mean square error [1] is

(14)

Therefore, the performance of the frequency estimation algo-
rithm compared to the CRLB is,

(15)

For large SNR and large N

dB

(16)

This limit was also obtained by a different method in [7].

VIII. SIMULATION OF THE PERFORMANCE

The performance of the frequency estimator was obtained by
simulation.

Figs. 2 and 3 show the rms estimation error,, as a function
of the SNR in decibels for the cases of a 16-point and a 1024-
point FFT, respectively. The results agree with the analysis.
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Fig. 2. The rms frequency estimation error as a function of the SNR in
decibels. Results are shown of one, two, and three iterations. The results are
compared to the CRLB. The FFT length isN = 16.

IX. CONCLUSION

An algorithm for frequency estimation has been introduced.
The high SNR performance of the algorithm is 0.063 dB above
the CRLB. The algorithm has low computational complexity
and is suitable for real time digital signal processing applica-
tions including communications, radar and sonar.
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