
Packet

Compressed

Sensing Imaging

(PCSI)
SCOTT HOWARD (KD9PDP), GRANT BARTHELMES, CARA RAVASIO,

LISA HUANG, BENJAMIN POAG, & VARUN MANNAM

DEPARTMENT OF ELECTRICAL ENGINEERING

UNIVERSITY OF NOTRE DAME

THIS WORK THIS IS LICENSED CC-BY-SA 4.0

What is PCSI?
 Image Transmission

 Digital Packets

 Unconnected Networks

 Multiple receive at once

 Receive Full Image regardless
of packet loss!

 Images look good with 80-
70% packet loss!

 Image to right: ~45% loss!

 Miss beginning/end – it’s ok!

 Any band or mode

 Software exists for any KISS
TNC (hardware/software)

 Trivial for transmitter. The
receiver does all the hard
computing

Our Image Transmission Challenge

 Hard Environments:

 Weak SNR

 Fading/Signal Loss

 Low compute power

 Limited time windows

 Analog

 e.g., SSTV

 Digital

 e.g., SSDV

SSDV

https://ukhas.org.uk/guides:ssdv

SSDV image of Moon and Earth taken by

Longjiang-2 / Lunar-OSCAR-94

Credit Cees Bassa

 Encode image as JPEG

 Transmit in packets of JPEG minimum coded

units (MCU)

 Optional forward error correction (FEC)

 Excellent results!

 Two issues:

 Lost packets = blank parts of image

 JPEG encoding + FEC hard in low-memory

devices

PCSI Examples

Original Image

(would require 914 packets)

Only send 10 packets

Only send 30 packets

Only send 100 packets

Only send 300 packets

PCSI Demonstration

 https://maqifrnswa.github.io/PCSI/

https://maqifrnswa.github.io/PCSI/

How does PCSI work?
FOR MORE INFO ON “COMPRESSED SENSING IMAGING,” CHECK OUT:

HTTP://WWW.PYRUNNER.COM/WEBLOG/2016/05/26/COMPRESSED-

SENSING-PYTHON/

http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python/

Compressed Sensing in Biology

 How do our eyes work?

 120 million rods (greyscale pixels), 6 million cones (color pixels)

 Humans Perceive ~24 bit color (16mil colors) and ~10bit grey (1000

levels)

 Humans perceive ~100 frames per second

 What is the needed bandwidth?

 (120million*24 bits + 6million*10)*100 = 294 Gb (gigabits) per second

 Optic nerve can carry less than 10 Mb (megabit) per second (Koch, et.

al., “How Much the Eye Tells the Brain” Current Biology, 2006)

 IT’S 30,000 times too slow!!! How can it be??!?

Compressed Sensing in Biology

 Our eye doesn’t have to transfer
all the imaging data, just
enough for our brain to
reconstruct what is there (or
perceives is there)

 Some amount of neural network
processing: pattern recognition
(sends “shapes” not “pixels”),
only transmit changes, etc.

 Can we use similar tricks to
transmit imaging data?

 Just transmit pixels on left and
reconstruct image on right

Why this matters:

 If we have imaging data in one location, and

we want to broadcast it, you can:

 Send it “analog” (e.g., SSTV from the ISS)

 Send it digitally (in packets)

 need two way communication to handle lost

packets (request resend)

 Compression need memory, power at transmitting

end

 If transmitting without acknowledgements, data is

lost – corrupting or losing the image

 What about digital packets that can be lost?

 Do we even need to send everything?

Do we even need to transmit all

the data?

 If your image is “sparse,” you don’t need to send every pixel!

 See paper for details and references

Random Pixels in the Packet

 Need to send random pixels each packet – but

needs to be deterministic.

 Pseudorandom Number Generators are deterministic
and sort-of-random!

 Each packet contains data from randomly selected

pixels and includes the “packet id number” in the

header. From the packet id number, the receiver

can deterministically figure out which pixels are

present in the packet!

Another Trick:

Chroma Compression

 Human eye: 120 million rods (greyscale pixels), 6 million cones
(color pixels)

 Do we need to send high resolution color?

 JPEG uses chroma compression (up to 4x)

 Chroma Compression in PCSI:

 Represent image as YCbCr instead of RGB

 Send Y data (e.g., B&W) for all pixels

 Send only a fraction of Cb and Cr (color) pixels

 Reconstruct each channel separately.

 PCSI Chroma Compression of 20 works well! (only send 5% of the
pixels as color, the rest as black and white!)

 Optional down size from 24 bit color to lower (e.g., 12 bit)

https://en.wikipedia.org/wiki/YCbCr

https://en.wikipedia.org/wiki/YCbCr

Packet Framing

 Any framing works! All that matters in the payload format (see paper

for spec)

 Currently implemented: AX.25

 Existing KISS hardware and software

 Compatible with APRS hardware/software – but not a good idea to

spam APRS channels

 Optional digipeating

 Future framing: SSDV-style Framing

 Less overhead, better for higher BER environments

PCSI Transmit Steps

 Use a PRNG to select random pixels from the image

 Chroma compression: select pixels to be YCbCr and others just Y

 Convert to RGB to YCbCr. Downscale bit depth

 Create Pseudorandom Datagram Payload (PDP) consisting of

header w/ image info and pixels

 Each PDP contains all the information you need to fully reconstruct an

image. Each additional PDP received increases image quality.

 Frame it up!

 Send it off to your TNC to handle flags, bit stuffing, CRC, etc.

PCSI Receive Steps

 Extract header and pixel info

 You now know image size, bit depth, etc. And you have the locations

and values of the full color (YCbCr) and B&W (Y) pixel channels

 Use a compressed sensing algorithm to make a best-guess as to

what each channel originally looked like, individually.

 We used: OWL-QN variant of L-BFGS (see paper) to reconstruct a sparse

DCT spectrum. This is the only computationally intense step of the

process.

 Combine reconstructed channels and convert back to RGB

 Display the image!

Future of PCSI

 Arduino transmit client

 Centralized packet upload

system (similar to SSDV’s)

 APRS Frequency Objects format

+ protocols

 Cell phone apps!

 Rob Riggs (WX9O) at

Mobolinkd has been helping

testing, we’re starting a

partnership developing PCSI

phone apps

Thank you, any questions?

 https://maqifrnswa.github.io/PCSI/

https://maqifrnswa.github.io/PCSI/

Math of compressed sensing (more

detailed)
 If I have an image and only transmit

a random subset of pixels, I’m doing
this math:

 “x” is a single vector that is a list of the
value of each pixel from the original
image

 “b” is a single vector that is a list of
the pixel values received at the end
of the transmission

 “A” is the “measurement” matrix
(example next slide)

𝑨𝒙 = 𝒃
x: b:

Math of compressed sensing (more

detailed)

 Let’s say we have a 3x3 image (9 pixels)

 𝒙𝟐𝒅 =
42 12 6
37 2 57
8 1 34

 Therefore

 𝒙 =
42 12 6
37 2 57
8 1 34 flatten

=

42
12
6
37
2
57
8
1
34

If we only transmit some pixels to

b…

 Let’s only transmit a few pixels (counting from the top, starting with 0):

 First pixel 5 (x[5]), then 1 (x[1]), then 7 (x[7]) to b

0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0

42
12
6
37
2
57
8
1
34

=
57
12
1

𝑨𝒙 = 𝒃

“b” vector is what we receive!

What if we are b? What do we

know?

 Now let’s just pretend we’re b, and we see the pixels that were

transmitted. Can we figure out what the original image is?

0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0

𝑥00
𝑥10
𝑥20
𝑥01
𝑥11
𝑥21
𝑥02
𝑥12
𝑥22

=
57
12
1

 Too many unknowns!!

 Need more constraints!

𝑨𝒙 = 𝒃

What if we are b? What else do we

know?

 Now let’s just pretend we’re b, and we see the pixels

that were transmitted. Can we figure out what the

original image is?

 Too many unknowns!!

 But we do know that, for the most part, if I take a Fourier

transform of most signals (and images), most of the

frequencies are zero.

 If I know that most of values of the frequency space is

zero, then I might have enough measurements to solve

my problem!

 NOTE: instead of Fourier transform, people use a “Discrete

Cosine Transform” (DCT) which is very similar. Maybe we’ll

get to details later, for now – it’s just like an FFT but it is only

real (no phase)

𝑨𝒙 = 𝒃

What if we are b? What else do we

know?

 So let’s transform our equation in to the frequency domain. “x” is the list of

pixel values, “X” is the DCT spatial frequencies

 We know A and b, so we want to find “X” in: 𝑨 idct 𝑿 − 𝑏 = 0

 We want to solve it using the “X” that has the fewest NONZERO elements

as possible (most of X are zeros)

dct 𝒙 = 𝑿

𝑨𝒙 = 𝒃
𝑨 idct(𝑿) = 𝒃

idct 𝑿 = 𝒙

How to find the right “X”
 “Minimizing number of non-zeros” is hard for a computer to do

 It’s called an “L0 norm”

 However, people found that if you instead minimize the “L1 norm,”

you pretty much get the same answer.

 Minimizing the L1 norm means just minimizing the sum of the abs of each

element: 𝑋𝑘

 OK, so in the end, what we want:

 Find (“guess”) the “frequency components” X that minimizes the error
between what we received and what we guess AND minimizes the “L1

norm”

error = 𝑨 idct 𝑿 − 𝒃 𝟐

L1 norm = 𝑿 𝟏 = 𝑋𝑘

How we “guess” the right X!

 Lots of math, but the above is easy! Programs already written to do that problem!

 https://en.wikipedia.org/wiki/Limited-memory_BFGS#OWL-QN

 http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python/

 Python: https://bitbucket.org/rtaylor/pylbfgs

 C: http://www.chokkan.org/software/liblbfgs/

 What do you need to do it?

 “b” – a vector of the pixels we received and we know the value

 “C” – a “weighting” coefficient for how much we want to “prioritize” finding a solution

has the least non-zero values in X. C is typically between 3 and 5.

 The program will just find us “X” that fits the above equation!

Minimize 𝑿 = 𝑨 idct 𝑿 − 𝒃 𝟐 + 𝑪 𝑋𝑘

https://en.wikipedia.org/wiki/Limited-memory_BFGS#OWL-QN
http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python/
https://bitbucket.org/rtaylor/pylbfgs
http://www.chokkan.org/software/liblbfgs/

Our example:

 Find the DCT coefficients (Xk) that minimize below:

0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0

idct
𝑋00 ⋯ 𝑋02
⋮ ⋱ ⋮
𝑋20 ⋯ 𝑋22 flatten

−
57
12
1

2

− 𝑋𝑘

 We set this up, and let the computer guess X for us. The computer then asks us to

find what is the value of the function above, we tell it, and I makes another guess.

 We also can tell it the derivative to make it faster.

