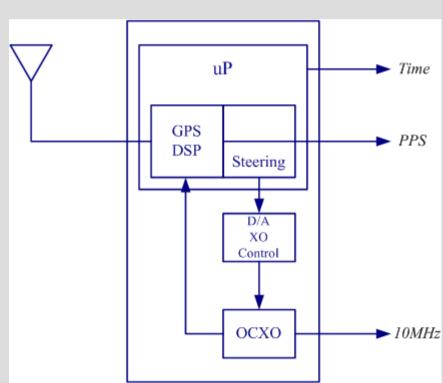


Design of the TangerineSDR Clock Module

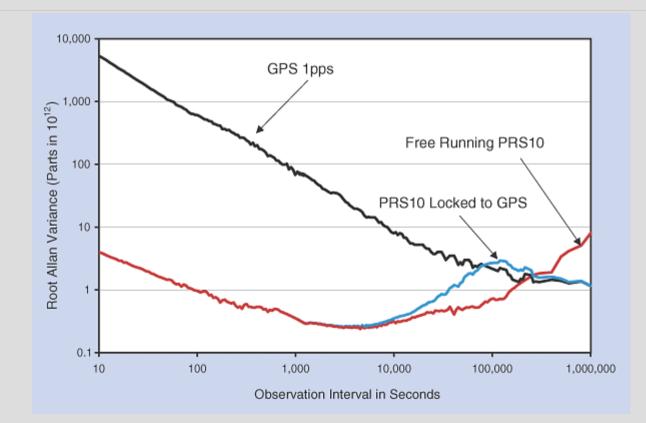
John Ackermann N8UR jra@febo.com http://www.febo.com

© 2020 John Ackermann

September 2020


TangerineSDR Clock Requirements

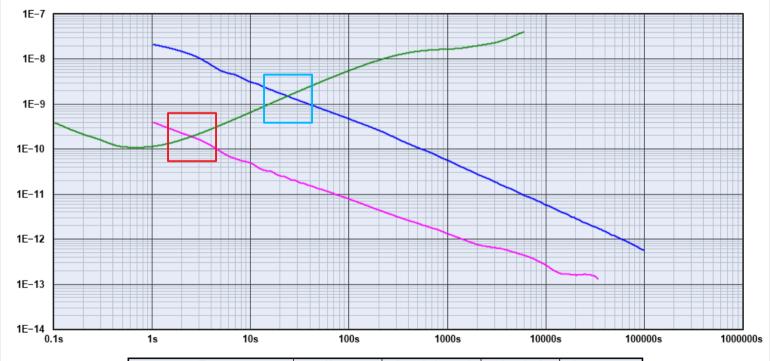
- 122.88 MHz clock to drive RF modules
- Pulse-per-second and timestamps for data tagging
- 10 MHz general purpose reference signal
- Total Electron Count observation/reporting
- Specifications (as declared by the team):
 - Frequency accuracy (long-term): <1x10⁻¹²
 - Frequency stability: $<1x10^{-9}$ (1 part per billion) at tau >= 1 second
 - PPS accuracy: within 100 nanoseconds of UTC(USNO)
 - PPS jitter: <10 nanoseconds
 - Phase noise (122.88 MHz):
 - -80 dBc/Hz @ 100 Hz offset
 - -150dBc/Hz @ 100 kHz offset


GPSDO Theory

- GPS has long-term accuracy and stability, but noisy in the short term; crystal oscillator has shortterm stability but drifts and is environmentally sensitive.
- Use phase-lock loop with suitable time constant to steer crystal to stay lined up with GPS

The GPSDO Visualized

Source: https://www.thinksrs.com/products/prs10.htm

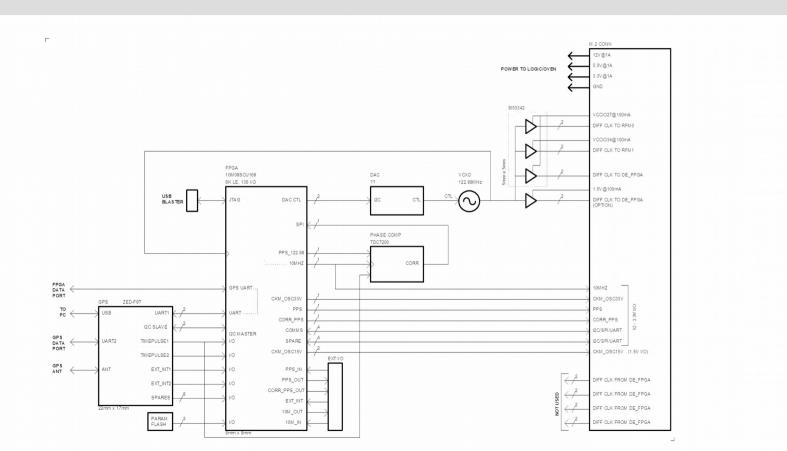

Taking Advantage of GPS Performance Improvements

- Dual-Frequency GPS (e.g., ZED-F9T) provides ¹/₂ order of magnitude improvement
- Sawtooth correction provides a full order of magnitude
- Net result is short term PPS noise of around 5x10⁻¹⁰
 - That actually exceeds our short-term specification!
- This low jitter allows a PLL with a time constant of a few seconds, rather than a few hundred
 - And that reduces the performance requirements for the local oscillator
- The ADEV plot tells the tale ...

The Magic Plot

Allan Deviation $\sigma_y(\tau)$

Trace	Notes	Sample Interval	Acquired	Instrument
Sparkfun EM-406A (SiRF III)	TVB Maser	1 s	400000 pts	HP 53132A
ZED-F9T Corrected PPS	vs HP 5071A	1 s	140000 pts	TICC
Vectron 125 MHz TCXO	vs HP 5071A	0.100 s	246082 pts	TICC



Key GPSDO Design Points

- Use low PPS noise to allow short PLL time constant
- Phase lock 122.88 MHz TCXO directly; no 10 MHz XO
 - 10 MHz output available via synthesis in FPGA
- FPGA serves as connection matrix and processor
- Lots of extra I/O to allow different implementations, *e.g.*:
 - Use 10 MHz XO for traditional design
 - Use low-noise synth chip to generate 122.88 MHz
 - Use external 10 MHz input as reference
- Module can be used independently of TangerineSDR
 - e.g., adapter shield to mount on Raspberry Pi
- Hardware and firmware are Open Source

Clock Module Block Diagram

