

1

Sponsored by:

2

3

4

1

William D. Engelke1, Cole Robbins1, Nicholas Muscolino1, Anderson Liddle1, Travis Atkison1,
and Nathaniel A. Frissell2

2

PERSONAL SPACE WEATHER STATION (PSWS)
WEB SITE UPDATE

DCC

BILL ENGELKE, AB4EJ

CHARLOTTE, NC, SEP. 2022 V9

WHAT WE WILL COVER TODAY

National Science Foundation (NSF)-sponsored project to
develop a network of personal space weather stations

Web site development status; testing prototype hardware

3

PERSONAL SPACE WEATHER STATION
PROGRESS REPORT

Included design of 2 new software defined radios (one
inexpensive, one high performance), plus a web site to
hold collected data. Both radios use GPSDO.

To be used for studying ionosphere via Doppler shift in
WWV and other phenomena

STATUS

The inexpensive SDR (CWRU) – is designed and is in final
preparation

The high performance SDR (TAPR) was delayed by about 2 years
due to COVID supply chain, but we now have the parts!

The magnetometer is in production, announcement at DCC Charlotte

The software for all the systems is ready for testing; all open source

The web site is in beta testing now

4

ARCHITECTURE OVERVIEW

Grape

Magnetometer

Tangerine
SDR

Magnetometer

Magnetometer

Internet
PSWS network

server
(at UA)

Other instruments are planned, e.g., VLF receiver

Raspberry
Pi 3 or 4

5

HOW TO USE IT

Sign up for account on web site
Add a station and one or more instruments

Grape, Magnetometer, TangerineSDR(future)

Configure & start an uploader

6

USING OBSERVATIONS

Click on observation of interest

Wait! (Large observation may take several minutes to be compressed)

File shows up in your download directory

Unzip file & run your data analysis

Spectrum files can be examined by making a waterfall plot

Magnetometer files can be analyzed using Excel (csv files)

Some examples…

7

4832

4834

4836

4838

4840

4842

4844

1
92

3
18

45
27

67
36

89
46

11
55

33
64

55
73

77
82

99
92

21
10

14
3

11
06

5
11

98
7

12
90

9
13

83
1

14
75

3
15

67
5

16
59

7
17

51
9

18
44

1
19

36
3

20
28

5
21

20
7

22
12

9
23

05
1

23
97

3
24

89
5

25
81

7
26

73
9

27
66

1
28

58
3

29
50

5
30

42
7

31
34

9
32

27
1

33
19

3
34

11
5

35
03

7
35

95
9

36
88

1
37

80
3

38
72

5
39

64
7

40
56

9
41

49
1

42
41

3
43

33
5

44
25

7
45

17
9

46
10

1
47

02
3

47
94

5
48

86
7

49
78

9
50

71
1

51
63

3
52

55
5

53
47

7
54

39
9

55
32

1
56

24
3

57
16

5
58

08
7

59
00

9
59

93
1

60
85

3
61

77
5

62
69

7
63

61
9

64
54

1
65

46
3

66
38

5
67

30
7

68
22

9
69

15
1

70
07

3
70

99
5

71
91

7
72

83
9

73
76

1
74

68
3

75
60

5
76

52
7

77
44

9
78

37
1

79
29

3
80

21
5

81
13

7
82

05
9

82
98

1
83

90
3

84
82

5

AB4EJ Magnetometer, Grid EM63 - 2022-08-30

Data Analysis: WWV Doppler Shift at sunrise

8

HOPS

1 2

3
4

ZOOMING IN – we can see the number of hops; each one magnifies the Doppler shift

Possible MSTID
Note sine wave both in frequency and
amplitude (Grape station AD0RR)

9

Difference in spectrum between AB4EJ
and AD0RR can be studied

EM63

Comparing spectrum between stations; eventually interferometry may be possible

WHAT NEXT?

We are looking for more beta testers who can set up a magnetometer and
start reporting data to the web site

Software is planned for producing magnetometer and spectrum plots on web
server

Today you can download observations & process them at your site

Final preparations in progress for producing both the Grape V2 and the
Tangerine SDR

Further tweaks and cleanups are planned for web site

10

GET INVOLVED

www.tangerinesdr.com

Monday night telco every week at 8 PM Central

Thursday afternoon telco every other week at 2 PM
central for science discussions

Q & A

Bill Engelke, AB4EJ

bengelke@cs.ua.edu

11

ACKNOWLEDGEMENTS

NASA Grants

12

FST4W on the HF Bands: Why - What to expect
- Equipment - Results.

Gwyn Griffiths G3ZIL, Glenn Elmore N6GN, Rob Robinett AI6VN, Lynn Rhymes WB7ABP,
 John Watrous K6PZB

Corresponding author: Gwyn Griffiths gwyn@autonomousanalytics.com

Summary
A greater use of FST4W on the HF bands could bring
several benefits, the marginal sensitivity increase of 1.4
dB over WSPR for the 120-second variant probably
being the least valuable. Other potential benefits are
greater tolerance to Doppler spread and the significant
increases in sensitivity from the longer sequences.
While ionospheric Doppler spread will limit the use of
the longer sequences, maximum utility of FST4W can
come from careful attention to minimising spectral
spread within transmitters and receivers. These are
areas where the amateur can make improvements. As
the protocol measures spectral width it provides the
essential tool to both gauge equipment performance
and also bring insights into propagation that SNR
alone does not provide

1. Introduction - Why HF band FST4W?
The FST4W (and FST4) digital protocols were
introduced in WSJT-X 2.3.0 together with a Quick-
Start guide1. Table 1 summarises the protocol's basic
parameters. While designed specifically for the LF
and MF bands FST4W has several advantages over
WSPR that could prove beneficial on the HF bands.
These are:

• Option of four sequence lengths, designated in
seconds as FST4W-120, -300, -900 and -1800.
While sensitivity increases with sequence length,
tolerance to spectral spread decreases.

• Better sensitivity, e.g. the FST4W-120 SNR
threshold is about 1.4 dB lower than WSPR.

• Greater tolerance to Doppler spread, e.g. for a
signal with a Doppler shift of 2 Hz FST4W-120
will decode at -24 dB SNR while WSPR requires
-17 dB SNR.

• Optional measurement of the spectral spread.
With WSPR we cannot say whether failure to
decode a spot was due to inadequate SNR or
excess spectral spread. FST4W gives us insights

into spectral spread that lets us determine the
likely cause. Spectral spread may also show
patterns related to propagation, e.g. at band
opening and closing, dusk and dawn, during
geomagnetic disturbances and their aftermath
that may be of interest.

Despite these potential advantages over WSPR to
date the uptake of FST4W on the HF bands has been
minimal. Users of WSJT-X on receive have to
preselect a single sequence length to decode, thereby
missing reception of other sequence lengths, let alone
WSPR in the same band. In a substantial upgrade to
WsprDaemon2 3.0 author Rob Robinett has enabled
decode of all requested FST4W sequence lengths as
well as WSPR on each selected band. The aim is that
by enabling simultaneous multiband, multimode
decoding this will encourage more amateurs to
transmit FST4W. A real-time list of WsprDaemon
users that shows those with FST4W decode enabled is
available online2.

Parameter -120 -300 -900 -1800
SNR threshold (dB) -32.8 -36.8 -41.7 -44.8

Symbol length (s) 0.683 1.792 5.547 11.200

Tone spacing (Hz) 1.46 0.56 0.18 0.089

Occupied bandwidth
(Hz)

5.9 2.2 0.72 0.36

Measured spectral
width (mHz)

5.3 2.14 0.74 0.35

Table 1. Basic parameters for the FST4W digital protocol for the four
sequence lengths together with the measured baseband spectral width
from jt9. SNR threshold is in dB in a 2500 Hz bandwidth. Except
for measured spectral width and an SNR threshold of -31.4 dB
WSPR-2 has the same parameters as FST4W-120.

This paper is organised as follows. Section 2
outlines what an FST4W user on the HF bands may
expect, drawing on the protocol modelling tool fst4sim
included in the WSJT-X package. Section 3 reinforces
the message in the Franke et al. Quick-Start Guide
that receiver and transmitter oscillator drift and short-

13

FST4W on the HF Bands

term frequency jitter need to be considered carefully
within an overall spectral spread budget for each
sequence length. The examples in section 4
concentrate on the 14 MHz band, ranging from
surface wave over tens of km to single and multiple
hop ionospheric F layer propagation when the earth's
geomagnetic field is quiet and active. The paper ends
with a discussion of these and other applications for
this underutilized digital protocol having clear
potential on HF bands as a propagation reporter and
investigative tool.

2. What to expect?
Figure 1 summarises two of the advantages of

FST4W-120 over WSPR. First, at spectral spreads of
less than 0.2 Hz there is 1–1.4 dB better sensitivity.
Second, above a spectral spread of 2 Hz the rate of
rise of required SNR is less for FST4W-120 than for
WSPR. At a spectral spread of 3 Hz WSPR will not
decode whatever the SNR.

The potential advantage of much lower decode
thresholds for the longer sequences, Figure 2, are
realised in practice at LF and MF where spectral
spreads due to propagation and equipment are lower
than on the HF bands. The practical pointers in
Section 3 on equipment requirements and the
examples of different propagation conditions in section
4 illustrate what can be achieved on 14 MHz. Suffice
to say here that the -1800 sequence length will likely
only be of use in few cases at upper HF, e.g. given
surface wave propagation and GPSDO oscillators at
transmitter and receiver.

Figure 1. A comparison of the decode threshold with spectral spread for
WSPR and FST4W-120. Acknowledgement: Based on figure
provided by Steve Franke K9AN.

Figure 2. How decode probability varies with SNR near the threshold
for FST4W-120 to -1800 in comparison with WSPR.
Acknowledgement: figure provided by Steve Franke K9AN.

2.1 Spectral spread and spectral width
It is important to address a matter of likely confusion
between spectral spread and spectral width. In this
paper spectral spread in an 'input' parameter, e.g. as
fdop in the fst4sim command line. In contrast spectral
width is an 'output' parameter from the jt9 executable.

Figure 3. Waterfall display of the spectrum of the 33rd harmonic of a
14 MHz local FST4W-120 transmission from on ANAN SDR at
N6GN using a KiwiSDR with GPSDO and a homebrew frequency
extender. The image shows the smooth transitions between tones and the
fraction of a tone period they span. The rectangle at the centre represents
additional spectral spreading.

For a simple pulse of constant amplitude and
frequency the bandwidth-time product (BT) is 1, that
is, a 2 s long pulse will have a bandwidth of 0.5 Hz.
However, for the Gaussian Frequency Shift Keying
modulation scheme adopted for FST4W BT is less
than 1, set by the bandwidth of the Gaussian filter. For
BT=1 the expected spectral width of a 109.3 second
transmission (the actual duration for -120) would be
9.15 mHz, i.e. 1/109.3 Hz. From jt9 the measured
spectral width of WSJT-X baseband audio was 5.3

0

0.25

0.5

0.75

1

−48 −46 −44 −42 −40 −38 −36 −34 −32 −30

D
ec

od
e

P
ro

ba
bi

lit
y

SNR2500 (dB)

FST4W-120
FST4W-300
FST4W-900

FST4W-1800
WSPR

14

FST4W on the HF Bands

mHz, suggesting a Gaussian filter with a BT~0.6,
comparable to that of Bluetooth at 0.5).

The important point is that the jt9 output spectral
width is for a single tone, and not the occupied
bandwidth of the received signal spanning four tones.
Figure 3, a waterfall spectrum from author Glenn
Elmore of the 33rd harmonic of a locally generated 14
MHz FST4W-120 transmission, shows the four-tone
G-FSK with smooth (Gaussian) transitions between
tones. A rectangle, added to the graphic, illustrates
how a spectral spreading increase encroaches on the
other frequencies, causing inter-symbol interference
while also reducing SNR.

2.2 Uses of the fst4sim simulator
While the information in Figures 1 and 2 give us a
good starting point in setting expectations for FST4W
the fst4sim simulator that is available as a command
line tool in WSJT-X lets us explore other potential
pitfalls and unexpected outcomes. The command line
is:
fst4sim "message" TR f0 DT fdop del nfiles SNR F
where:
message - callsign, locator and power to encode, e.g.

"G3ZIL IO90 23"
TR - sequence length in seconds, values for FST4W

being 120, 300, 900 and 1800.
f0 - baseband frequency, our examples use 1500 Hz.
DT - time offset in seconds between tx and rx.
fdop - notionally the (ionospheric) Doppler spread, but

in this work we take this value as the total spectral
spread that includes spreading due to the tx and rx.
fst4sim uses an embedded version of an ITU
channel simulator3 in turn based on the Watterson4

model.
del - the differential path (multipath) delay in

milliseconds. We have not explored this parameter
and use the default of 1 ms; in all cases the
differential delay is much shorter than the FST4W
symbol lengths.

nfiles - number of simulations to run.
SNR - the input SNR, which we will compare with the

model output. In all cases we have used -15 dB.
F - a flag to indicate FST4W mode.

The simulator generates number nfiles of wav files
of the selected length that the jt9 command line
executable can decode. By including an empty file
named plotspec in the directory in which jt9 is run the
spectral width will also be calculated and displayed in
a WSJT-X window.

2.2.1 Effect of time offset
While rarely a problem these days (a check on the time
offset of 1000 WSPR spots on 20 m showed a lower
decile of 0.024 s and an upper decile of 1.09 s) larger
time offset can occur, e.g. using a remote KiwiSDR
via a browser. Figure 4 shows the output SNR and
output spectral width when fdop=0 for FST4W-300.
Between time offsets of -1.0 s to +2.0 s both SNR and
spectral width values are well behaved. However,
while still decoding the data, biased values are
reported out between -1.5 s and -1.0 s and between
+2.0 s and +2.4 s, with SNR biased low and spectral
width biased high. Other sequence lengths show the
same general behaviour over very similar time offsets.

Figure 4. Variation of SNR and spectral with from fst4sim with time
offset between transmitter and receiver for -300, showing biased values
at each extreme but before no decode is possible.

Closely related to time offset, measurements of the
effect of changing a KiwiSDR's abuf setting for browser
connections are described in section 3.

2.2.2 Calculated spectral width, decode
probability and SNR with spectral spread
For these simulations nfiles was set at 50 for each value
of fdop and the mean and standard deviation of the
computed set of SNRs and spectral widths calculated.
The probability of decode at each fdop was estimated
from how many of the 50 wav files were decoded.
Figure 5 shows the variation of calculated SNR,
spectral width and decode probability for the -120 and
-300 sequence lengths vary with spectral spread.

We see that:

• At zero fdop the decoded SNR is over 1 dB down
on the -15 dB input SNR for an unknown reason.

• SNR becomes further biased low as fdop increases,
reaching -2 dB even with probability of decode

FST4W- 0

15

FST4W on the HF Bands

above 95%. The bias is greater for -300 than for -
120.

• The jt9 output spectral width values show a linear
trend with input spectral spread until the decode
probability starts to drop. The output spectral
width ends up being biased low as it is only those
transmissions with (statistically) lower spectral
widths that are decoded and therefore included in
the measurements.

In summary, these graphs alert us to expect
instances of SNR and spectral width biased low as the
input spectral spread increases. They also help set
expectations for probability of decode.

3. Equipment
While the ionosphere is probably the most variable
contributor to spectral spread on the HF bands, as
highlighted in the FST4 Quick-Start Guide1, it may
not necessarily be the largest. Spectral spread

inevitably arises, to some degree, at a transmitter and
receiver from oscillator drift and shorter-term jitter

It is not a trivial task to characterize the spectral
spread of transmitters and receivers. A key enabler for
this study was to use external GPSDO frequency
control of four reference transmitters and receivers,
namely:

• Transmitter: ANAN 'Angelia' SDR transceiver at
N6GN, Fort Collins, Co.

• Remote receiver: KiwiSDR 21 km from N6GN.
• Transmitter: ANAN-10 at K6PZB, Graton, Ca.
• Receiver: KiwiSDR at WB7ABP/K, Santa Rosa,

Ca., 10 km from K6PZB.
These systems, with master oscillators phase-locked

to GPS, provided the basis for calculating the spectral
spread of other KiwiSDRs using their standard GPS
aiding algorithm. This algorithm is best described as
intermittent correction rather than frequency-lock, let
alone phase-lock.

As FST4W provides us with estimates of overall
spectral spread from transmitter to receiver via the
propagation path knowing the transmitter and
receiver spectral spread estimates we can estimate the
remaining spread due to the propagation path, e.g.
for one- and two-hop F-layer propagation. Full details
of these calculations are in the Annex while example
equipment spectral spreads are described below.

3.1 Spectral spread of GPSDO transmitters and
receivers.
We could not measure the spectral spreading of a
GPSDO receiver or transmitter alone, only in
combination over a 21 km surface wave path. The
histogram in Figure 6 shows the distribution of spectral
width output by jt9 from 543 spots between 19–23 July
2022 over a completely line-of-sight path. The peak at
0.00625 Hz is almost double the audio baseband
width of 0.0035 Hz.

As there were identical GPSDOs at each end, we
will assume equal contributions to spreading. This
positive-only, unimodal distribution with an extended
right tail lends itself a Gamma distribution fit, the red
line. From the Gamma distribution we can split
equally into spectral width estimates for the GPSDO
transmitter and receiver alone (see Annex for the
methods used).

Figure 5. Variation of spectral width, decode probability and SNR
with spectral spread from 50 runs of the fst4sim model at each
value of Doppler spread for -120 upper, and -300 lower. The
bars on spectral width are at +/-2.5 times the standard deviation,
that is, 99% of the values lie within the interval.

16

FST4W on the HF Bands

Figure 6. Histogram of the distribution of FST4W-300 spectral width
determinations with GPSDO transmitter N6GN and GPSDO receiver
N6GN/K over a 21 km line of sight path, from 543 spots 19–23
July 2022. In red is a fitted Gamma distribution, shape=5.62 and
scale=0.00132.

3.2 Some issues when not using a GPSDO
In practice, many potential users of FST4W on the

HF bands may not have access to GPSDOs.
Depending on the characteristics of the hardware
there may be other spectral spread mechanisms in
equipment commonly used for WSPR, such as:

• A transceiver used for sending and receiving
FST4W, even at 5 W output, may reach an
elevated temperature such that at the end of the
transmit cycle it will take many minutes for its
(quite likely TCXO) master oscillator to settle to a
sufficiently stable frequency for -300 and longer
sequences.

• The innovative approach to mapping audio to
RF frequency, emulation of the Gaussian slide
between tones, and the tone spacing on transmit
in the QRP Labs QDX digital modes transceiver5

merits further evaluation. Although the receive
side is well suited for FST4W to -900 the signal
generated on transmit appears to be nowhere
nearly as good at the time of writing (firmware
1.04).

Because of the ubiquity of KiwiSDRs with standard
GPS aiding two spectral spread issues are summarised
below followed by an assessment of the low-cost QDX
with its TCXO.

3.2.1 KiwiSDR short-term frequency stability
While perfectly acceptable for WSPR and FST4W-
120 the short-term frequency stability of the KiwiSDR
with its standard GPS aiding is almost certainly a
limitation for the longer FST4W sequences at least on

the upper HF bands. Figure 7 shows two measures of
short-term frequency variations.

The upper histogram is of frequency error at 10
MHz against a 10 MHz GPSDO from measurements
one second apart using the frequency analysis tool in
fldigi on a captured wav file. The red curve is a fitted
Gaussian distribution with a mean error of -0.037 Hz
and a standard deviation of 0.046 Hz.

The lower histogram is spectral width from a
standard KiwiSDR at KPH, Point Reyes, Ca. of
transmissions from a GPSDO transmitter at K6PZB
38 km distant for FST4W-120. While this includes the
spectral spreading at the transmitter, from Figure 6
this would be less than 10% of the total. The median
spectral spread is 0.068 Hz. This is of the same order
as the standard deviation of one-second frequency
errors measured at G3ZIL.

3.2.2 KiwiSDR browser connection abuf setting
If accessing a KiwiSDR via a browser reducing the
buffer duration by specifying abuf=0.5 in the url, e.g.
http://10.0.1.234:8073/?abuf=0.5 will reduce spectral

0.10

0.20

0.30

0.40

P
ro
ba
bi
lit
y

0 0.005 0.01 0.015 0.02 0.025 0.03
Spectral width (Hz)

0.02

0.04
0.06

0.08
0.10

P
ro
ba
bi
lit
y

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
Frequency error (Hz)

0.05

0.10
0.15

0.20
0.25

P
ro
ba
bi
lit
y

0 0.05 0.1 0.15 0.2 0.25 0.3
Spectral width (Hz)

Figure 7. Two measures of short-term frequency variation in two
KiwiSDRs. Upper: Histogram and fitted Gaussian distribution
at G3ZIL of frequency error at 10 MHz at one-second
intervals. Lower: Spectral width from jt9 at KPH from
FST4W-120 GPSDO transmissions from K6PZB over a 38
km path.

17

FST4W on the HF Bands

spreading from that with the default value and reduce
the time offset, Table 2. Those reductions will increase
the margins for spectral spreading and DT for
ionospheric paths and transmitters with time offsets.
Note that setting a long buffer time is
counterproductive; the result is a large spectral spread
and a much reduced decode probability likely
associated with the higher DT (section 2.2.1).

Parameter Default 0.5 1.0 1.75

Median (Hz) 0.088 0.057 0.085 0.667

% SW/TS 6 4 6 46

% decode 100 100 100 23

DT (s) 1.6 1.1 1.5 1.9

Table 2. Median spectral width in Hz and as a fraction of the Tone
Spacing together with the probability of decode and the time offset for
FST4W-120 from a KiwiSDR via a browser for different values, in
seconds, for the buffer length abuf.

3.2.3 QDX receive short-term stability
The QRP Labs QDX is a low cost digital modes
transceiver with a TCXO. On receive it has an
impressively low standard deviation of frequency error
of 0.008 Hz at 10 MHz against a GPSDO and the -
2.04 Hz mean error measured at G3ZIL could easily

be accounted for in the user-set calibration. In a test at
N6GN the measured spectral width receiving FST4W-
300 from a GPSDO transmitter was 0.0198 Hz.

At G3ZIL the receive frequency shift after two
cycles of transmitting FST4W-300 was an initial 0.75
Hz, returning toward the pre-transmit value with a
time constant of about 230 s, but with a 0.2 Hz shift.

These are very encouraging figures on receive,
however, the innovative transmitter does require
further study.

4. Results
4.1 Main findings
The main findings of this study are summarised in
Figure 8. Each column shows the spectral spread
'budget' out to where the fst4sim decode probability has
dropped to 10% for each sequence length. Each
column has three sources of spectral spread:
transmitter, receiver and propagation path. The
example transmitter and receiver spectral spreads have
been derived from the measurements outlined in
section 3.

Figure 8. Spectral spread budgets for FST4W-120 to -900 for example combinations of transmitter, receiver and ionospheric propagation
on the 20 m band. The upper limit for each column is the spectral spread at which there is only a 10% probability of decoding the signal.
Also marked are the limits for 50% and 90% decode probability. While these lines remain in the purple 'headroom' area decode should be
possible for quiet conditions (Kp <3).

18

FST4W on the HF Bands

The spectral spreads are at the 90% level, that is,
based on the Gamma function modelling, these values
would only be exceeded 10% of the time. The
propagation path spreads, for one- and two-hop, are
from the measurements described later in this section.
These were observed on 20 m and an assumption of
acceptable extrapolation is made when considered for
other bands

In all bar two of the examples (-300 and -900,
ANAN and standard KiwiSDR two-hop) there is, to a
greater or lesser extent, some headroom between the
ionospheric component and the 90% probability level.
That is, if the ionospheric spectral spread increases the
decode probability will remain above 90%.

On 20 m for -300 with standard KiwiSDR and
two-hop, even with a quiet ionosphere, the spectral
spread means that the decode probability has already
fallen to below 90%. For -900 with standard
KiwiSDR and one-hop, the spread budget at 90%
probability has already been used by the receiver (and
a minor part by the transmitter). Few decodes would
be expected. For this reason we have not considered
the -1800 mode with half the spectral spread budget of
-900. Even fewer decodes would be expected for the
higher frequency bands.

From our measurements the QDX receiver with its
standard TCXO would be suitable for receiving in
-900 one-hop situations on its top band of 20 m. A
KiwiSDR with an external TCXO or GPSDO would
also be suitable for -900. Arising from this study the
KiwiSDR designer has provided an option for

updating the oscillator correction only during a gap in
FST4W transmissions.

4.2 Spectral widths over contrasting paths
Figure 9 shows a time series of spectral width from jt9
over four days in July 2022 for transmissions of
FST4W-300 from N6GN. The paths were 20 km,
1558 km and 5291 km respectively. All three are at
mid-latitudes. The log scale is necessary to show the
two orders of magnitude difference between the 20 km
and 5291 km paths.

Gaps in reception at WB7ABP/K were, with day-
to-day variability, grouped around 0600–1200 UTC
when the MUF over the propagation path was at its
lowest. The reception pattern at AI6VN/KH6 was
different, gaps were more scattered through each day.
It is possible that the MUF remained sufficiently high
for a range of 5291 km with two-hop propagation.

These spectral width time series include spreading
contributions from the transmitter (ANAN with
GPSDO, minimal), the receivers (KiwiSDRs with
GPSDO at N6GN/K and WB7ABP/K, minimal),
and with standard GPS aiding of a KiwiSDR at
AI6VN/KH6. Using the method described in the
Annex the estimated spectral spread from the
ionospheric propagation paths alone were abstracted,
with the results shown as model histograms in Figure
10. The spectral spread over the propagation paths
from Colorado to California and to Maui are both
skewed with a tail to the right, and the mode at the
lowest bin. These are characteristics shared by the
published6 Doppler spread over a path from Svalbard

Figure 9. Time series of the spectral width on a log scale as output by jt9 from FST4W-300 transmissions by N6GN for three different
propagation paths to: (green) N6GN/K a KiwiSDR with GPSDO at 21 km; (cyan) WB7ABP/K a KiwiSDR with GPSDO at 1558 km;
(orange) AI6VN/KH6 a KiwiSDR with standard GPS aiding at 5291 km.

19

FST4W on the HF Bands

to southern Norway in April 1995 on 9.04 MHz - one
of few examples available.

In contrast, the distribution for the 12,254 km
trans-equatorial path to short-wave listener
ZL2005SWL on the North Island of New Zealand is
more symmetrical, with a mode well away from the
lowest bin, approaching a Gaussian distribution.

4.3 Some interesting patters of spectral spread
At times, FST4W spectral width estimates appear to
contain information related to the physical
phenomena underlying the cause of the fluctuations.
The WsprDaemon Grafana dashboard for FST4W
allows rapid inspection of interesting parts of time
series. Figure 11 is one example, from FST4W
transmissions from N6GN to WB7ABP/K. There are
times where successive, independent measurements,
with low scatter, appear to show wave-like behaviour.

There was also a steady increase from 00:00 UTC on
20 July, and, from 02:40 to 03:10 an event where four
measurements were well above the slow, upward
trend. As the MUF dropped, and the band
approached closing, there were fewer decodes, the
SNR had dropped, and spectral widths were high and
scattered.

Finally, there remains a puzzle. The mode of
spectral widths of FST4W-120 from the GPSDO
transmitter at K6PZB at KPH, 38 km distant on 14
MHz was at 0.085 Hz. At KFS, Half Moon Bay, Ca.,
124 km distant, over the example time series in Figure
12, there was just one K6PZB decode with a spectral
width below 0.1 Hz. Yet the mode of the spectral
width at KFS for FST4W-120 from N6GN 1535 km
distant, via the ionosphere, was far lower at 0.06 Hz.
What form of propagation was there between K6PZB
and KFS to produce such high spectral spreading,

FST4W onnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn ttthehehhhhhhehehehhhhehehehheheehhheehehhhhhhehhehehhhehehhhhehheheheehheeheeheehehhheheeee HHHF FFFFF FFFFFFF FFFF FFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFF BaBaBaBBaBaBaBBaBBBaBBaBaBBBaBaBaBaBaBaBaBBBaBaBaBaBaBBBBaBaBBaBaaaaBaaaaBaBBBaaaBBBBBaaBBandndndndndnndnndndddndnnndnddndndnnndndnddnddnnnndnnnnnndnnnddnndndnndnnnddddnnndnnnddndnnndsssssssssssssssssssssssssssss

Figure 10. Histograms of spectral spread for the ionospheric path only, derived using the method in the Annex, for three paths from N6GN,
Fort Collins, Co., to WB7ABP/K, Santa Rosa, Ca., AI6VN/KH6, Maui, Hi., and ZL2005SWL, North Island, New Zealand. To
WB7ABP/K and AI6VN/KH6 transmissions were FST4W-300, and FST4W-120 to ZL2005SWL.

Figure 11. Time series of the spectral width of FST4W-300
transmissions from N6GN received at WB7ABP/K with
suggestion of periodic variations, times with very low scatter, an
event around 03:00 UTC and a slow rise toward the band
closing.

Figure 12. Time series of the spectral width of FST4W-120
transmissions from K6PZB received at KFS using its SW
antenna. The separation is 124 km - why the large spectral
widths? They were much greater than those from N6GN at 1535
km via the ionosphere at this time.

20

FST4W on the HF Bands

with SNR between -23 and -10 dB in 2500 Hz
bandwidth, and with this temporal pattern? With only
SNR, e.g. from WSPR, the question may well not
have arisen. As it stands, there may be interesting
aspects of surface wave HF propagation yet to be
better understood.

4. Discussion and future work
It would seem a missed opportunity if FST4W were to
be considered a protocol only suitable for the LF and
HF bands. The -120 sequence length has no additional
limitations over WSPR; instead it brings the minor
benefit of a small increase in sensitivity and a large
benefit in its measurement of spectral width. Not only
can these measurements spur technical innovation in
reducing the spectral spread within transmitters and
receivers it can provide additional insight into
propagation. It is important to note that sensitivity and
spectral width are interlinked - near threshold
sensitivities will only be achieved if the spectral spread
is low. As we show, equipment-induced spectral spread
can exceed that of the ionosphere on HF for one-hop
paths.

We have outlined these advantages in this paper
together with examples of use and several limitations.
In particular, it is likely that the -1800 sequence length
will only be of very specialised use on non-ionospheric
paths or on lower the HF bands. Furthermore, the
-900 sequence length may only be of practical value
for one-hop ionospheric paths.

Users of KiwiSDRs and WsprDaemon (who
currently report some 26% of all WSPR spots) are well
placed to report FST4W transmissions following the
WD3.0 upgrade by Rob Robinett. We encourage
additional transmissions of FST4W-120 and -300 on
the HF bands given this receiver base.

Further studies in the near-term will include:

• Evaluation of the new option on the KiwiSDR to
have it alter its clock frequency only during non-
data gaps in WSPR or FST4W transmissions.

• In-depth testing to identify the causes of, and
potential remediation measures for, significant
spectral spreading on transmit of the QDX digital
transceiver.

• Adding to the fst4_decode.f90 module within jt9
to output spectral width for candidate spots that
were not decoded. This will help identify where

excessive spectral width rather than low SNR was
the cause of failure to decode, and by what
margin the allowable spectral spread was
exceeded.

• What is the propagation mechanism over the 124
km path between K6PZB and KFS and why the
large spectral spread compared with a similar but
shorter path?

• FST4W into and through the Auroral Oval,
working with KiwiSDR installations at Inuvik,
Northwest Territories, Canada, and VY0ERC,
Eureka, Nunavut, Canada.

• Comparing SNR values for WSPR and FST4W
as we have seen significant differences and we do
not understand the use of a 12.5*Log10 (sequence
length) adjustment in the fst4_decode.f90
program.

Acknowledgement
We are grateful to the Maritime Radio Historical
Society (KPH) and Craig McCartney W6DRZ, Globe
Wireless Radio Services and KFS Radio Club (KFS)
for hosting the KiwiSDR systems, the supporting
infrastructure, and the splendid antennas and to Chris
Mackerell, ZL2005SWL for his spots from NZ.

Annex. Separating out contributions to
spectral spreading from the transmitter,
receiver and propagation path using Gamma
functions.
This annex describes a practical, statistical method for
separating out the spectral spreading from transmitter,
receiver and propagation path. It does not attempt to
separate out the contributions for a single transmission. The
method is applicable where a number of decodes are
available over a path and there is some knowledge of the
equipment at each end. To begin, experiments over line-of-
sight or at least surface wave paths of no more than a few
tens of km are needed. The statistical analysis can be done
with the R free software for statistical computing.

A Gamma function is an appropriate fit to the data sets
observed to date, in that they are positive only, essentially
unimodal and with a long right-hand tail. If a distribution is
not unimodal there may be reasons, e.g. the data set spans
distinctively different propagation conditions. In that case
one should attempt to separate, perhaps into two or more
time periods, and analyse separately.
Using the equipment and paths in this paper to illustrate the
method, the key steps are:

21

FST4W on the HF Bands

1. Over a line-of-sight or surface wave path of a few 10s of
km use a transmitter and receiver with GPDSO master
oscillators with WsprDaemon or WSJT-X with empty
file plotspec added to obtain spectral widths. Using R or
another package plot spectral widths histogram, fit a
Gamma distribution, and obtain two parameters: Shape
and Scale (note that the mode is at Shape*Scale). Figure
A1 (upper) is for N6GN to N6GN/K over a 21 km line
of sight path, the data and a best-fit Gamma distribution
with Shape=5.62, Scale=0.00132. Next, in R use those
parameters to generate a set of random (spectral width)
values conforming to that Gamma distribution, Figure
A1 (lower), using:

Figure A1. (upper) Histogram of actual spectral width values in Hz
over a 21 km line-of-sight path from N6GN to N6GN/K with
identical GPSDO master oscillators at the transmitter and receiver with
a best-fit Gamma distribution. (lower) A synthesised histogram of a
Gamma distribution of 500 values with the same Scale and Shape
parameters as the observations.
2. Next, assume we can neglect any spectral spreading over

this line-of-sight path. We further assume that the
measured spectral spreading was equal at the transmitter
and receiver; a reasonable assumption as the GPSDOs

were identical. It is a property of Gamma distributions
that if we halve the Shape parameter, keeping the same
Scale parameter, and add the independent, individual
random variables drawn from those two half-Shape
distributions we end up with the original distribution.
Therefore, we can synthesise individual GPSDO
transmitter and receiver spectral spreads from:

These will be distributions of random spectral width
values, that of the receiver shown in Figure A2 (upper).
In Figure A2 (lower) we have added the individual
values from the independent transmitter and receiver
distributions and plotted using the commands in step 1.
Note that individual columns differ slightly as different
random values from distributions with the same
parameters have been used. The Shape and Scale are
also slightly different at 5.105 and 0.00146. Using more
than 500 points would likely bring closer agreement.

Figure A2. (upper) Histogram with fitted Gamma distribution for the
N6GN/K GPSDO receiver only, formed by halving the Shape
parameter from Figure A1 keeping the same Scale. (lower) Synthesised
distribution for the transmitter and receiver to compare with Figure A1
(lower).
3. Next we take the measured spectral width distribution

from the same transmitter, N6GN, to WB7ABP/K, with
a GPSDO receiver, over a single-hop ionospheric path
of 1558 km, Figure A3 (upper), fit a Gamma distribution

22

FST4W on the HF Bands

with Shape=1.878 and Scale=0.0215, and synthesise a
distribution of 500 random values, Figure A3 (lower).

Figure A3. (upper) Histogram with fitted Gamma distribution for the
total path from N6GN to WB7ABP/K including contributions from
the transmitter and receiver. (lower) Synthesised distribution for the total
path to compare with Figure A3 (upper).
4. To arrive at the propagation path only spectral spread

we subtract the individual random values generated for
n6gn_tx and n6gn_rx (as the equipment at WB7ABP
was the same) from the individual random values
forming the distribution in Figure A3 (lower). The
absolute function is needed as the subtraction produces
some small negative values. Next we fit a Gamma
distribution to the path only set of values. The resulting
distribution, Figure A4, has Shape=1.151 and Scale-
0.0297.

Figure A4. Synthesised distribution with fitted Gamma curve for the
path-only spectral spreading from N6GN to WB7ABP/K.
5. From the Shape and the Scale parameters for the

transmitter, receiver and path separately we calculate
spectral spread values at a cumulative probability of
90% - that is, the value likely to not be exceeded 90% of
the time. [This is easiest in Excel using gamma.inv (0.9,
Shape, Scale)]. Those values are used as the individual
component spectral spreads in Figure 8.

6. The same method is used for the other examples. The
estimate for the KiwiSDR receiver with GPS aiding is
made over the 38 km path from K6PZB to KPH
knowing the K6PZB GPSDO transmitter spread.
Knowing the KiwiSDR spread the method in step 4 is
used for the two-hop path from N6GN to AI6VN/KH6,
whose receiver is a standard GPS aided KiwiSDR.

1 Franke, S., Somerville, B. and Taylor, J., Quick-Start Guide to FST4 and FST4W, available at
https://physics.princeton.edu/pulsar/k1jt/FST4_Quick_Start.pdf checked August 2022
2 Website at http://wsprdaemon.org/ code available at https://github.com/rrobinett/wsprdaemon and real-time list of WsprDaemon
listeners with FST4W shown as F* is at http://wsprdaemon.org/fst4w
3 Testing of HF Modems with Bandwidths of up to about 12 kHz Using Ionospheric Channel Simulators, Recommendation ITU-R
F.1487, International Telecommunications Union, 2000.
4 Watterson, C.C., Juroshek, J. and Bensema, W., 1970. Experimental confirmation of an HF channel model. IEEE Transactions on
communication technology, 18(6), pp.792-803.
5 See https://qrp-labs.com/qdx.html
6 Angling, M.J., Cannon, P.S., Davies, N.C., Lundborg, B., Jodalen, V. and Moreland, K.W., 1995, September. Measurements of
Doppler spread on high latitude HF paths. In Proceedings of the AGARD Sensor and Propagation Panel Symposium on Digital
Communications Systems: Propagation Effects, Technical Solutions, Systems Designs.
Available at https://apps.dtic.mil/sti/pdfs/ADA310824.pdf#page=135

23

VARAC
Walter Holmes K5WH

Areas of Interest

What is VarAC?
Software required
Hardware required
Vara-HF settings
VarAC settings
Operational Choices
Operational Choices while in QSO
Other Features
Further Assistance

24

What is VarAC?

A newer digital mode that allows for
keyboard conversations even in weak or
low band conditions, typically over HF
If you remember the old Packet Radio days
of the 80’s, you may find this similar
The ability to chat, leave messages, transfer
files, check signal reports, and see what
stations others have heard recently

Software Required

If you use WinLink on HF today, you already have half of the
software now

Vara-HF by EA5HVK
Vara v4.6.3 is the latest version
https://rosmodem.wordpress.com/

VarAC by 4Z1AC
VarAC adds NEW features frequently
https://www.varac-hamradio.com/

25

Hardware Required

Like most digital mode software, VarAC requires a
sound card digital interface

Most current radios have this built in

Legacy or older radios may require a SignaLink,
RigBlaster, RigExpert, just to name a few, or any of
the similar type interfaces

Install Vara-HF &VarAC, then launch VarAC

26

Vara-HF Settings, VARA Setup

Vara-HF Settings, Soundcard

27

VarAC Settings, My Information

Rig Control and VARA Configurations

28

VarAC Settings, Canned Messages

VarAC Settings, Appearance & Sounds

29

VarAC Settings, Frequency Schedule
Change frequencies automatically

Operational Choices
Frequency

30

Send Beacons

Call CQ

31

Call CQ
Slot Request

Ping
To get a signal report

32

Connect
Select a callsign to begin QSO

QSO Bandwidth 500hz or 2300hz

33

Operational Choices while in QSO
QSY Down or UP, off calling frequency

Load canned message

34

SEND FILE

SEND VMAIL

35

Viewing the Vmail

PSK REP. MAP
To show stations on PSK Reporter

36

PSK REP. MAP
To show stations on PSK Reporter

Other Features
Notice the list of Last Heard beacons

and Last heard CQ calls

37

Right Click on a callsign
for options

Clear
Copy All
Ping (get report)
QRZ.COM lookup
PSK Reporter lookup
Callsign History
QSY to slot

Logs

QSO Log
Chat History
Last Heard Log
VarAC Log
Open Logs Directory

38

Resources

Quick Start Guide
User Manuals (EN)
User Manuals (Non EN)
VarAC Facebook Group
VarAC Forum
Troubleshooting
FAQ

Further Assistance

For any follow-up information or configuration
assistance, please contact Walter-K5WH

walterh@k5wh.net

Or join us on ZOOM anytime around the clock
http://www.k5wh.net/zoom/

39

40

Keywords

41

42

43

44

Keywords

45

46

47

48

49

50

ESP32 Packet/APRS
Creating a Low Cost Tracker

Written By:
Jason Rausch K4APR

Remí Bilodeau VE2YAG

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

51

Introduction

Nearly ten years ago, Remí VE2YAG and I crossed paths via a short YouTube
clip I saw of a handmade APRS display device. I contacted the person who uploaded
the video and told him I would love to work with him to create some kind of product
around the idea. He contacted me back and said that the device was the work of his
friend Remí and gave me an email address to contact him. I emailed Remí and we
quickly became friends around our common love for packet and APRS. Fast forward,
Remí and I have created several APRS related hardware devices. Some have become
formal products that we sold and others have been experiments that either were held
internally for our own use or we shelved because we got excited about another idea.

When the ESP32 came around, I was still playing with PIC’s and had dabbled in
Arduino. I should point out, I am by no stretch of the imagination an embedded
programmer. My code is embarrassingly cobbled together from my own badly written
routines that take me forever to write and snippets I find online. Remí, on the other
hand, is a code wizard. I can throw out an idea and he’ll have it written and ready for
testing in no time. Anyways, the ESP32 came around and we immediately saw the
potential to apply it to an amateur radio data application. Since we had previously
focused on APRS, it was only natural that we do the same with the ESP32. This paper
is based on that work, hopefully shows what we have accomplished and what we are
still working on.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

52

Design Goals

We set out to build an APRS modem/tracker with the following design goals:

● Centered around the ESP32’s rich feature set
● Integrated 1200 baud AX.25 modem
● USB Serial Interface (FTDI Preferred)
● KISS Support through USB and Bluetooth
● Integrated GPS Receiver
● Op-Amp Audio Design, Avoid Modem IC
● Operates as an APRS tracker autonomously and with a tethered device
● Small, Lightweight and low cost to produce
● Minimal LED Indication (reduce draw when battery operated)
● Easy audio adjustment
● Web Interface Configuration

Most of these design goals are well within reach and most have already been
implemented. In this paper, I will do my best to point out where we have achieved a
goal, which are yet to be implemented and those that are still being improved.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

53

Choosing a Microprocessor

For years I have been working with PIC microprocessors. They were introduced to me
by my involvement in the HamHUD APRS project and I had no idea there was such a
powerful device available in such a tiny package. These days, there are many DSPic
devices that with some add-on peripherals could do what we needed, but the parts
count starts to really add up. Not to mention, debugging any of the sub-systems. Remi
and I had used the CORTEX LM3S800 in the original YagTracker. Later we moved onto
the LPC1343 and LPC1347 in the ExpressTracker models. While these ARM based
processors all worked well at the time for our applications, they too were lacking
something…wireless connectivity.

Enter the ESP32. It’s truly a marvel of modern microprocessor technology. I’ll spell out
the full specifications in the next section, but the major advantage the ESP32 had over
the other guys was the built in wireless connectivity options. Bluetooth, Bluetooth LE
and WIFI 802.11b/g/n. This opens up the endless possibilities for connecting this
device to other devices. We’re not talking about concentration on internet, as many
APRS users have gone to. We’re talking about connecting to a modern device, while
still using a real radio. Put the radio back into amateur radio.

Not only does the ESP32 have wireless connectivity, but it has a whole host of
interfaces and supported protocols making adding on the hardware we need easy!

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

54

ESP32 Hardware Overview

Let’s get right into it and talk about the ESP32 hardware itself. The ESP32 is an
incredible amount of features packed into a tiny package that averages less than $5
each, single quantity. Here are the specifications:

● 32 Bit Microprocessor
● Two CPU Cores
● 80-240 MHz Clock Speed
● Three Hardware UARTs
● 12 Bit ADC, Up to Eighteen Channels
● Two 8 Bit DAC Channels
● I2C, SPI, SD Card Interface, PWM and SDIO
● 22 GPIO Pins
● 32 MB of On-Board SPI Flash
● Built-In Bluetooth and Bluetooth LE
● Built-In WIFI 802.11b/g/n
● +3.3V Operating Voltage
● Can be programmed using Arduino IDE and ESP32 Support Plugin

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

55

ESP32 and FTDI USB Interface

The ESP32 doesn’t require a lot of external components to make it work. It is
somewhat sensitive to power fluctuations and we found good power filtering with large
electrolytic capacitors worked the best to prevent problems. Notably, the 10 uF
capacitor on the EN (Enable) line of the ESP32. The 3V3 line also benefited from 0.1uF
and 22pF capacitors to handle high frequency transient noise on the power rail.

The ESP32 is a bit finicky about how it is programmed. We used an FTDI FT231X
USB-Serial IC that has a full UART, plus hardware handshaking pins. Most notably RTS
and DTR lines needed for the self-resetting circuit. This not only prevents the user from
having to manually reset the tracker after a firmware upload, but performs the
somewhat complicated and time critical line pulsing “dance” it takes to put the ESP32
into a bootload mode for flashing. We started off by using a two discrete transistor
setup for doing this, but found that it didn’t always work and we would have to reset and
start again. In comes the ROHM UMH3NTN single IC with dual NPN transistors and
built in base resistors. By switching to this single part, all of the bootload/flashing issues
were solved.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

56

In this section of the schematic you can see the FTDI FT231X single IC solution to
USB-Serial communications. The FT231X takes care of the USB heavy lifting, leaving
you a TTL serial interface. FTDI drivers are included in just about every major OS now
and you rarely have to actually go download them to get things talking. Just plug n’
play!

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

57

Op-Amp Audio Section

When I went to Remi about the idea to build this, he already had a working op-amp
based modem design he was playing with on a couple of other projects. It seemed like
the perfect fit for our new APRS tracker. The part we started off with was a Microchip
MCP6002. With the global shortage, the MCP6002 soon became nearly impossible to
obtain, so we had to look for a replacement. We found the Microchip MCP6402T was
close to the specs of the MCP6002 and a perfect pin-for-pin replacement. The part is a
dual op-amp, reducing down to a single part, with some additional caps and resistors to
form the output low-pass filter on the transmit side and a simple DC blocking circuit on
the receive side.

Two 10K single turn trim potentiometers are used to control the transmit level and limit
overloading to the receive section. IO25_TXA is a direct connection from the ESP32
DAC to the op-amp. MODEM_RXA is a direct connection from the radio port to the
op-amp.

This design along with Remi’s method has yielded a phenomenal decode rate of even
poorly encoded packets. Remi has four individual decoding algorithms operating
simultaneously to potentially catch any scenario and hopefully pull out a CRC-passed
packet. The first two algorithms are correlator methods and the second two are filter
methods. The correlator algorithms can be described as self-multplicative correlator
with a flat and high frequency boost filter. The filter algorithms use a comparison of
sine, cosine/sine of the 1200 Hz and 2200 Hz tones to detect which is which.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

58

We Are Having Some Problems

For the transmit side, we are having problems with the audio being decoded by just
about any hardware I test with. This includes standards like the Kenwood D7/72/710
radios, Kantronics KPC-3, Argent Data Systems Tracker 2 and the NinoTNC. Some
initial tests showed that the waveform might be the issue, having a rough “raspy” sound
to it. Remi was able to tweak a few things in his code to clean this up, but yet decode of
the transmitted packets have not been successful. I should note that Remi has a
hand-built version of this circuit using through hole components and doesn't seem to
have this problem. We can’t nail down if the issue is with hardware, firmware or a
combination of the two.

This o-scope shot shows the audio stepping out of phase. It was determined that the
DAC was inverting some of the waveform, causing this. Some quick changes to the
code fixed the problem.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

59

The fix resulted in this o-scope capture.

This is a comparison scope view of the raw output from the DAC, output of the op-amp
section and just past the low-pass filter before going through the 10K transmit level
potentiometer.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

60

Radio Interface

We employed the Mini DIN interface standard as the interface to the radio. There is
also a four pin header on the PCB, for applications where the Mini DIN might not be
optimal.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

61

On-Board GPS Receiver

When looking for a low-cost, high performance GPS for the tracker, there were several
options. While not cheap, the Trimble Copernicus II was an excellent option and
proven. I also had a lot of experience with this GPS chipset when I put it in my RTrak
all-in-one APRS tracker. It was a great option, but just too expensive. Another popular
option is the UBlox line of receivers. Low cost, decent performance, but sometimes
hard to source.

No, we needed a better option. I decided to fall back to a gem I had found several
years ago, but had mixed results with. The Antenova M10578-A3. At just over $20
USD, it’s an excellent performing chipset, small, 3.3V power capable and perfect for our
needs. The only real configuration is making sure the E2 and E3 lines are at the correct
levels to set the baud rate to 4800 baud. In the future, we could switch up to 9600
baud. A simple change to the solder jumpers on the back of the board and we’re talking
faster!

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

62

Configuration

As of the time writing this, configuration is done in one of two ways:

Command Line

Much like a DOS or Linux terminal interface. Simple text commands that return
current values or when accompanied by arguments can commit changes to
settings.

Text Configuration File

Remi has implemented an in-terminal text editor that allows you to create a
complete configuration file that is loaded on power-up/boot. The structure is
much like a DOS batch file with section [xxx] headers and simple x=y settings
under the header.

Example (not complete):

[tnc]
callsign=k4apr
tz=0
verbose=0

[gps]
baud=4800

[kiss]
enable=1
persist=63
slottime=1
txdelay=35
dac_zero=128

Web Configuration

A future option will be the ability to connect to the device via WIFI and using a
web browser navigate to 192.168.10.1 to be presented with a web interface for
configuration of all settings.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

63

What’s Left to Do?

1. We have to get to the bottom of the transmit audio issue. We have been fighting
this for a while. Numerous hardware revisions, hacking up older hardware to try
“simple fixes”. We’re open to any suggestions!

2. Web Interface for configuration. We know that if this is going to be a product that
people buy, they are going to want an easy way to make configuration changes,
especially when in the field/on the go. The web interface is really the only
solution for this.

This is a quick mock-up site written in HTML.

Conclusion

We have made a lot of progress, but there is still work to do. Some might ask “why?”
when APRS seems to be waning. Our argument is, APRS is coming back. We’re
seeing an increase in activity all over the place and we think there is a need for a
product like this.

In Memory of Robert Bruninga WB4APR 1948-2022
“The Father of APRS”

64

ezDV: Low Cost Digital Voice on the
ESP32

Mooneer Salem, K6AQ (mooneer@gmail.com)
August 2022

Abstract
FreeDV is a series of digital voice modes optimized for use on the HF portion of the radio
spectrum that uses the Codec2 open source voice codec library. Traditionally, this has taken the
form of a desktop application running on a Windows, Mac or Linux PC. However, there are
challenges with this approach, especially for portable operation. This paper will discuss a low
cost approach with high ease of use that eliminates the need for a computer for encoding and
decoding digital voice.

Introduction
Codec2 is a library originally created by David Rowe (VK5DGR)1 in 2009 to provide an open
source, patent unencumbered digital voice codec for use on amateur radio. Since that time, the
library has been extended to also support the various FreeDV modems required to use Codec2
on the air, as well as created a GUI based application2 to enable their use.

While usage has gradually increased, there are several current pain points surrounding initial
configuration as well as more practical concerns with the need for a PC to encode and decode
FreeDV. Unlike with most popular ham radio applications (for example, WSJT-X), FreeDV
requires two sound cards in order to be able to fully use the mode: one for the radio interface
and the other for analog audio input and output. This is on top of the typical digital mode setup
(e.g. adjusting transmit audio to ensure that ALC does not show any indication on the radio) and
is different enough that it has caused confusion for some operators in the past.

In addition, unless one has a laptop that can be carried out into the field for portable use, the
requirement that one runs FreeDV on a PC inherently limits it to stationary, home use. Even if
one owns a laptop and is willing to take it portable, the decision to do so inherently results in
having to rethink one’s power budget and other constraints, which could result in having to make
other changes to the portable station to stay within those constraints. Depending on one’s
priorities during portable operation, this could mean that FreeDV is left at home anyway.

2 “FreeDV: Open Source Amateur Digital Voice.” FreeDV, https://freedv.org/.

1 Rowe, David. “Open Source Low Rate Speech Codec Part 1.” Rowetel, 26 Aug. 2010,
https://www.rowetel.com/?p=128.

65

An alternative to a full-featured laptop is an embedded device that can perform basic FreeDV
modulation and demodulation. One example of such a device is the SM10003. The SM1000
uses an STM32F4 microcontroller and is able to modulate and demodulate three FreeDV
modes: 700D, 700E and 1600. However, due to the ongoing chip shortage, the SM1000 has
been sold out with no ETA for return as of the time of this writing. The relatively high price prior
to it selling out (~US$200) also made it less accessible to hams that could not easily afford to
purchase the device without already being heavy users of FreeDV.

The ESP32 Microcontroller
The ESP32 was originally brought to market by a company called Espressif in 2013 in the form
of the ESP82664. This device was the first product to achieve wide adoption by the maker
community due to its low cost and the inclusion of wireless functionality. Initially, documentation
was solely in Chinese, but English language documentation along with a Software Development
Kit (SDK) and libraries came about in short order. The wide adoption and wireless functionality
made it a natural candidate for an embedded amateur radio device, especially as many newer
radios are coming with network connectivity as a standard (or at least reasonably priced5)
option.

As of this writing, there were a few variants6 of the ESP32 that were found to possibly be
suitable: the original ESP32 and the ESP32-S3. Unfortunately, the -C3 and -S2 variants are not
suitable for FreeDV at this time due to the heavy usage of floating point operations in the library;
previous tests by this author on the RP2040 (from the Raspberry Pi project)--which also has no
floating point unit–resulted in performance significantly slower than real time7. Upon further
investigation, it was found that the -S3 variant also has support for SIMD instructions8 (similar to
SSE on the Intel x86 architecture). There was previous successful experience optimizing
portions of the Codec2 library to take advantage of those instructions on the PC9, so the
ESP32-S3 was ultimately chosen to enable this possibility during development.

9 Salem, Mooneer. “700C: Use Vector Ops for rx_filter_coh() When Possible. by Tmiw · Pull Request
#200 · drowe67/codec2.” GitHub, 24 July 2021, https://github.com/drowe67/codec2/pull/200.

8 ESP32S3 Series - Espressif.
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf.

7 Salem, Mooneer. “Fixed Point/FPGA Implementation of Codec2 · Discussion #223 · drowe67/codec2.”
GitHub, 31 Oct. 2021, https://github.com/drowe67/codec2/discussions/223#discussioncomment-1565289.

6 “Chip Series Comparison.” ESP-IDF Programming Guide,
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/chip-series-comparison.html.

5 “Welcome to Wfview.org.” Wfview, https://wfview.org/.

4 Cording, Stuart. “What Is the ESP32? Its Brief History and How to Get Started.” Elektor, 10 Mar. 2022,
https://www.elektormagazine.com/articles/what-is-the-esp32.

3 Rowe, David. “SM1000.” Rowetel, http://rowetel.com/sm1000.html.

66

Porting to ESP32
The next step after deciding on the ESP32-S3 was to buy a development device to begin testing
the FreeDV codebase. The nanoESP32-S3 was discovered during a search of Tindie10 and
quickly purchased. For futureproofing, the “N8R8” variant with 8MB of PSRAM and flash was
selected.

Upon receipt of the nanoESP32-S3, work was undertaken to attempt to compile the Codec2
library using the ESP-IDF development environment. As the ESP-IDF development environment
natively uses CMake (much like FreeDV and Codec2), integration with a sample project using
the “__EMBEDDED__” compiler definition (which enables various memory and space
optimizations to allow it to fit onto the STM32F4) was straightforward. However, upon initially
attempting to compile the test application, errors related to the CMSIS library11 appeared on the
console.

Investigating further, it was discovered that the usage of CMSIS was limited to a single file
called “ofdm.c” inside the Codec2 library. These references were to complex value and real
valued dot product operations provided by CMSIS (namely arm_dot_prod_f32()12 and
arm_cmplx_dot_prod_f32()13). Fortunately, Espressif’s ESP-DSP library also contained similar
functions for performing dot product operations14 and used the ESP32 SMID instructions when
available. An initial pass at updating the ofdm.c file to use the ESP-DSP functions instead of
CMSIS proved to be successful.

Before submitting the pull request to the Codec2 project, the changes made to use ESP-DSP
were generalized to support architectures other than ARM and ESP32. This was done through
the use of a known wrapper interface that embedded device designers would use to implement
the required dot product operations. The SM1000 code was also updated to implement these
wrapper functions using the CMSIS library. After testing these changes, a pull request was
created in the Codec2 project to merge them into the codebase15.

15 Salem, Mooneer. “Allow Use of __EMBEDDED__ on Non-ARM Systems. by Tmiw · Pull Request #317
· drowe67/codec2.” GitHub, 3 Apr. 2022, https://github.com/drowe67/codec2/pull/317.

14 “Espressif DSP Library API Reference.” Espressif DSP Library v1.2.0-3-g2415e61 Documentation,
https://docs.espressif.com/projects/esp-dsp/en/latest/esp-dsp-apis.html#dot-product.

13 “Complex Dot Product.” CMSIS-DSP Software Library,
https://www.keil.com/pack/doc/CMSIS_Dev/DSP/html/group__cmplx__dot__prod.html#ga93796e73f0277
1cf6fe13de016e296ed.

12 “Vector Dot Product.” CMSIS-DSP Software Library,
https://www.keil.com/pack/doc/CMSIS_Dev/DSP/html/group__BasicDotProd.html#gadf26f6bc62d641652
8663ad3e46fbf67.

11 “CMSIS.” Arm Developer, Arm Ltd., https://developer.arm.com/tools-and-software/embedded/cmsis.

10 Wu, Johnny. “NanoESP32-S3 Development Board by MuseLab on Tindie.” Tindie,
https://www.tindie.com/products/johnnywu/nanoesp32-s3-development-board/?pt=ac_prod_search.

67

Audio Input and Output
The next step after confirming that the FreeDV codebase was able to compile on the ESP32
was to set up audio I/O. Unfortunately, while the ESP32-S3 does have an analog to digital
converter (ADC), it does not have the functionality to emit an analog signal again. Additionally,
the ADC that did exist on the -S3 had 12 bits of resolution16. It was decided to investigate
additional audio ADC and DAC chips that could be integrated onto the board.

One product that particularly stood out was the TLV320 series audio codec chip by Texas
Instruments. In particular, the AIC3254 variant had two ADC and two DAC channels17, which
made it ideal for processing both the radio audio and the analog headset audio. The chip also
supported various audio routing modes (for example, the left channel of the audio going to the
ESP32 could be configured to be coming from input #1 while the right channel could be
configured as coming from input #2). As FreeDV solely works with mono audio signals and
ignores the second channel, this made it possible to only need one TLV320 on the board to
handle all the audio requirements of the device. Its cost was also fairly low at around $10 each
in small quantities18.

To make sure that the TLV320 would be satisfactory for the device, investigation was done into
purchasing an EVM (also known as a development board) containing the TLV320. However, the
TLV320 EVM was US$250 when purchased directly from Texas Instruments19, a significant cost
for effort that may possibly need to be thrown away. Instead, it was determined that a first pass
at building a development board containing the TLV320 would be done instead.

Building the Development Board
To build the development board, a new KiCad project was created to hold the schematic and PC
board layout. Pin headers were then placed in the schematic to represent the nanoESP32-S3,
followed by the TLV320 and its required passive components as per its datasheet and technical
reference documentation. Two TRRS 3.5mm jacks were also added, one for radio audio and
one for a wired headset. Buttons and LEDs were also added to represent the most common
operations (PTT, volume up/down and selecting FreeDV modes) and system status (PTT on,
network connection, sync and audio overload).

Once these components were routed on the PCB, some thought was taken as to how it would
be assembled once the boards arrived. While this author does have some SMD soldering

19 “TLV320AIC3254EVM-K.” TLV320AIC3254EVM-K Evaluation Board | TI.com, Texas Instruments,
https://www.ti.com/tool/TLV320AIC3254EVM-K#order-start-development.

18 “TLV320AIC3254IRHBT.” JLCPCB,
https://jlcpcb.com/partdetail/TexasInstruments-TLV320AIC3254IRHBT/C182339.

17 “TLV320AIC3254.” TLV320AIC3254 Data Sheet, Product Information and Support | TI.com, Texas
Instruments, https://www.ti.com/product/TLV320AIC3254.

16 “Analog to Digital Converter (ADC).” ESP-IDF Programming Guide,
https://docs.espressif.com/projects/esp-idf/en/v4.4/esp32s3/api-reference/peripherals/adc.html.

68

experience, the experience was lacking for components as small as the TLV320. Thus, it was
decided to take advantage of JLCPCB’s SMD assembly service. This service was reasonably
priced for prototyping (generally part cost plus a fee per part for what they call “extended parts”).
After some time spent in associating parts on the schematic with parts that were in stock at
JLCPCB, the Gerber files were submitted to them and payment was made.

While waiting for the initial boards to arrive, development of the firmware for the ESP32 was
undertaken. This involved a first pass at writing the initialization and audio I/O code (using the
I2C and I2S functions available as part of ESP-IDF) as well as a basic loop for sending audio
through the Codec2 library. The initial effort completed in time for the arrival of the development
boards.

Debugging the Firmware
Unfortunately, it was discovered that one of the pins on the nanoESP32-S3 that was initially
intended for use with the TLV320 was shared by the multi-color LED. As a workaround, the pin
on the board’s pin header was cut and the female side bridged to a neighboring pin. The change
was also reflected in the schematic and PCB for the next revision of the board.

Additionally, the initial pass had significant issues with configuring the TLV320. During
development, it was decided to configure the TLV320 such that it used an 8 KHz sampling rate;
this sample rate is the native sample rate as used in the FreeDV codebase. However, much of
the sample code available for the TLV320 assumed a 48 KHz or 44.1 KHz sample rate, so a
guess as to the data to send over the I2C bus was made. Significant time was spent performing
modification/flash/test cycles trying different commands and command orderings in an attempt
to have working audio, but eventually a series of commands was found that properly configured
the chip for 8 KHz audio.

Because of the way that audio was being fed into the Codec2 library, however, part of one of the
input audio channels did not work properly. Initially this was thought to be a hardware issue for
two reasons: seeing pulsing on the offending channel with an oscilloscope and due to the issue
only affecting one channel and not the other. A second revision of the board was spun that did
the following:

● Avoided use of the GPIO pin that was connected to the multi-color LED on the
nanoESP32-S3,

● Rerouted all traces to the TLV320 to shorten them as much as possible,
● Added additional vias connecting ground planes (especially surrounding the sensitive

audio traces coming from the TLV320) to improve noise immunity,
● Tweaked the values of various components on the schematic/PCB, and
● Added mounting holes for future mounting in an enclosure.

These resulted in the following schematic and PCB design:

69

Fi
gu

re
 1

: T
he

 T
LV

32
0

an
d

su
pp

or
tin

g
co

m
po

ne
nt

s
on

 th
e

ez
D

V
 s

ch
em

at
ic

.

70

Fi
gu

re
 2

: T
he

 L
E

D
s

an
d

ot
he

r e
xt

er
na

l i
nt

er
fa

ce
 c

om
po

ne
nt

s
on

 th
e

ez
D

V
 s

ch
em

at
ic

.

71

Figure 3: The top signal layer of the ezDV PCB including ground pours.

72

Figure 4: The 3.3V power layer of the ezDV PCB.

73

Figure 5: The bottom signal layer of the ezDV PCB.

74

Figure 6: The bottom ground layer of the ezDV PCB.

Upon receiving the new revision boards, it was discovered that performing these changes did
not resolve the audio problem. After further research into the TLV320 technical documentation, it
was discovered that it had a loopback mode that bypassed the firmware entirely. Enabling this
mode demonstrated that audio was being decoded and re-encoded successfully on both
channels, indicating a problem in the firmware. Additional debugging of the firmware then found
the issue causing the audio failures and thus allowed audio input and output on both jacks to
work properly.

75

Building the Enclosure
The next step after producing a basic working prototype of the firmware and hardware was to
build an enclosure to protect it during transport and use. This author purchased a Creality Ender
2 Pro 3D printer to print out prototypes of the enclosure due to its small size (which was good
for storage and use in an apartment) and low cost. After some time learning how to use the
printer for pre-made designs on websites such as Thingiverse, it was time to learn how to create
3D models. OpenSCAD was especially ideal for someone with a software development
background as it allowed designs to be represented in the form of code20.

One challenge was in determining how to produce buttons that stay with the enclosure (that is,
those that don’t easily fall out). Building the enclosure such that the buttons were larger on the
top and bottom and had a narrow area to allow movement seemed like the obvious choice to
enable this to happen (Figures 7 and 8). However, it was difficult to adjust the sizing properly to
allow the buttons to freely move yet not fall out.

20 “OpenSCAD CheatSheet.” OpenSCAD, https://openscad.org/cheatsheet/.

76

Figure 7: The ezDV enclosure buttons viewed from inside the enclosure.

Figure 8: ezDV enclosure buttons viewed from the top of the enclosure.

77

After updating and printing many iterations of the design (to test various measurements for the
buttons), a working version of the ezDV enclosure that allowed the buttons to move up and
down and “click” on the PCB buttons resulted. This enclosure was printed using a transparent
PETG filament (for added strength) and is shown below:

Figure 9: Top view of the 3D printed ezDV enclosure.

78

Lessons Learned and Next Steps
During the initial development of ezDV, a few things were learned:

1. Hardware development is more accessible than it has been, especially with online PCB
assembly houses (such as JLCPCB and PCBWay) that only need a credit card and your
Gerber files to produce small runs of boards. In the past, PCB assembly houses only
worked with developers if they were willing to produce large runs, which would be
problematic if an issue was found in the PCB design after the fact.

2. It’s important to definitively rule out firmware bugs before jumping to hardware related
issues. While having one audio channel with problems was suggestive of a hardware
problem, it wasn’t guaranteed to be one in retrospect, especially if the firmware does
additional processing of the input or output.

3. The Codec2 library (and FreeDV more generally) are well suited for cross platform use
due to the relatively low usage of platform specific code. Even on the PC, audio I/O is
done through third party libraries (such as PortAudio and PulseAudio/pipewire) instead
of being done directly.

There are also some things that would be good to add in future iterations:

1. Removing the dependency on the nanoESP32-S3 by integrating the ESP32-S3 directly
onto the board. Doing so would result in a decrease in board size and cost as well as
enable other functionality to be included in the space that was saved (for example, a
built-in speaker/mic for analog audio or battery charging).

2. Perform testing using the original ESP32. If FreeDV performance is still acceptable on
that part, that would enable use of standard Bluetooth instead of requiring a wired
headset, resulting in only needing power to run the board (if also used with a radio that
supports wireless connectivity such as the Icom IC-705).

3. Enable wireless connectivity. Some basic code to communicate with the IC-705 was
prototyped, but it didn’t have adequate reliability. Part of this effort would be to improve
said reliability as well as possibly lower memory consumption (as it currently requires
use of the PSRAM to run without crashing the ESP32). A Web based configuration
interface could also be created to configure various components in the firmware, such as
Wi-Fi network information and callsign (for PSK Reporter support).

Additional Information and Resources
ezDV is open source and available on GitHub at https://github.com/tmiw/ezDV for those
interested in having their own embedded FreeDV solution. Pull requests are always welcome
there, as well as the main FreeDV projects (https://github.com/drowe67/freedv-gui and
https://github.com/drowe67/codec2).

79

Alex Schwarz
VE7DXW

alexschwarz@telus.net

Detecting field lines as propagation at fault lines
A discovery that belongs to all Amateur radio operators

80

Types of faults and their effect on propagation:

What are the best fault lines for propagation?

81

Fault lines are everywhere

82

Fault lines found in the Lower Mainland

83

Where does the energy come from – is the moon supercharging the planet?

Energy from Quakes

84

M7.5 in the Falkland Islands shakes the planet creating an electrical tsunami
(fictional)

Data provided by Alabama University website:

85

Energy from the gravitational pull of the moon

Energy from tidal movements of water

Energy from tidal movements of continents

Calculating the energy required to move the continents

1.62 x 1019 kg

We have to use the ISO definition of mass; 1 kg is 9.8 N. Now we are able to calculate
the work needed to move the continents by 25 cm; measured in Joules.

4 x 1019 J = 40 EJ (exa = 1018)

9.26 x 1014 W of power

86

Power from external sources mostly solar

Field Day Experiment 2022

87

The areal picture that was obtained using Google Earth also revealed the existing
fault

88

Conclusion of Field Day Experiment (25 % improvement of contacts)

What are we planning next

Scientific goal:

50 day running average created by new addition of the RF Viewer, to be released
shortly

89

Conclusion

References

Article; using an airborne fault line detector in Salt Lake City.

Website for EMF 390:

The nature of fault lines

Convert the M Richter scale to metric values into moment and wave energy; ISO
values of Joules

Connection between small quakes and the moon

Tidal energy

The lifting of the continents

Howmuch do all the continents weigh?

Total landmass of planet earth

90

Thermosphere Climate Index

Received radiation

91

92

93

•

94

•

•

•

•

•

•

95

•

•

96

•

•

•

•

•

•

•

•

•

•

97

•

98

•
•

•

99

100

101

102

103

•

•

•

•
•

104

•
•
•
•
•

105

106

•

•

•

107

108

109

110

111

112

113

114

115

116

Zhang and Callahan: Preliminary Analysis of An AI-powered Transcription Bot for FM Transmissions 1

Preliminary Analysis of an AI-powered Transcription
Bot for FM Transmissions

Zhemin Zhang KD2TAI1, Brian Robert Callahan AD2BA1

1: Rensselaer Polytechnic Institute

Abstract
Amateur Radio communications mediated by Artificial Intelligence (AI) and Machine
Learning (ML) provide a wide variety of experimentation. One potential experiment is
developing a bot using AI/ML that can read FM voice transmissions, transcribe the audio
heard into text, and finally post the transcriptions on social media, all without human
intervention [1]. In this paper, we consider some factors that may influence transcription
accuracy. While accuracy is important, there are additional considerations for transcriptions,
especially those that may be archived on the Internet: these include not posting gibberish
and indecent words. We consider these points as improvements to our initial design.

Figure 1. System Block Diagram

Introduction
Artificial Intelligence (AI) and Machine Learning (ML) is an exciting new focus for amateur
radio experimentation. In a forthcoming article, we demonstrated a prototype of an
AI-powered transcription bot for FM transmissions, named FMBot [1]. The system uses
AI/ML technology to transcribe text from audio demodulated from an FM signal using an
SDR, then push the transcript to a social media account on the Internet. As our initial
prototype was solely a minimum viable product, more questions must be addressed in order
to produce a more full-fledged system. Some of the most important questions identified
center around accuracy. How accurately can the system transcribe words, and how does it
select the messages to be broadcasted? Additionally, as we came to refine our
understanding of the problems the AI/ML bot intends to solve, we have come to adopt a
broad view of the concept of accuracy to incorporate ideas of unintelligible and
inappropriate transmissions.

117

Zhang and Callahan: Preliminary Analysis of An AI-powered Transcription Bot for FM Transmissions 2

In this article, we conduct experiments to explore possible factors that may influence the
transcription accuracy of FMBot, and measure the degree of such impacts. We also explore
methods to filter out meaningless (also known as “gibberish”) or inappropriate messages.

On accuracy
A key takeaway from the minimum viable product was that different models yielded different
levels of accuracy. We used VOSK [2] as the open source off-the-shelf AI/ML speech
recognition software for transcription. For its English-language models, VOSK offers three:
the largest model we learned would only run on quite powerful desktop machines; a
moderately powerful laptop was unable to run the largest model. There is a midrange model
for such laptops and other similarly midrange-specced machines. Finally, there is a small
model for lightweight machines such as the Raspberry Pi.

The size of the model made a noticeable difference in accuracy of the transcribed text.
While we didn’t measure the exact accuracy of each model, as conditions between radio
and computer setups might skew exact numbers, we felt anecdotally confident that the
improved accuracy was noticeable by comparing outputs between different models.

Accuracy in transcription is a common problem for many disciplines. To take just two
disparate examples, psychotherapists have argued that increased automatic transcription
would increase effectiveness, training, and monitoring [3], and musicians are interested in
automatic transcription to aid in capturing music heard accurately into other forms more
suitable for analysis [4]. Depending on context, accuracy for our bot might be more or less
needed: amateur operators looking for amusement might not require much more accuracy
than is needed to enjoy their bot. However, we also envision a bot like the one we are
developing acting in part as a response to Covid-19: as clubs turned to Zoom and other
Internet services for meeting, our bot can be used to put those meetings squarely back into
the amateur radio space over the airwaves without needing to record audio or have
someone furiously take notes. For this activity, clubs likely need a higher level of accuracy
than those looking for amusement. Moreso, we also envision the bot enabling voice
activities such as voice contesting for amateur operators who might not otherwise be able to
participate in such voice-based activities.

Not only does accuracy mean the literal English-words-to-English-text that we often think, in
our preliminary experiments we noticed oftentimes the bot would post transcripts of
gibberish, effectively nonsense and nonsense words. We also noticed that the bot would
interpret pockets of silence as the word “the” which led us to eventually implement a filter
that would reject all single-word messages. We also think of accuracy in terms of not
posting inappropriate transmissions. Such transmissions could include hate speech,
offensive words, and other transmissions that may be deemed “not safe for work.” While the
FCC does have rules prohibiting the transmission of “obscene or indecent words or
language” [5], it does not necessarily follow that all amateur transmissions are free of such

118

Zhang and Callahan: Preliminary Analysis of An AI-powered Transcription Bot for FM Transmissions 3

language. Amateurs with transcription bots of their own may not want such language
transcribed into text and then posted on social media on the open Internet on their
accounts. A bot ought to be able to identify inappropriate transmissions and prevent the
posting of transmissions including such words to the best of its ability.

Experiments
We have identified two factors that are important to transcription accuracy: signal-to-noise
ratio (SNR) and bandwidth. Intuitively, it is harder to understand another person’s words
with noise in the background or talking over the telephone, which demonstrates the effect of
the two aforementioned factors. We previously discussed the impact of SNR on accuracy
quantitatively [1], so we will focus solely on bandwidth here.

These are the specifications for the hardware and software we used to conduct our
experiments.

a. Hardware specifications
i. Processor: AMD Ryzen 7 3800X 8-Core Processor 3.90GHz
ii. Installed RAM: 32 GB
iii. Software-Defined Radio: RSP1 kit connected via USB

b. Windows specifications
i. Edition: Windows 10 Home
ii. Version: 2004

c. Software specifications
i. Python 3.9.12
i. VOSK 0.3.42
ii. PyAudio 0.2.11

119

Zhang and Callahan: Preliminary Analysis of An AI-powered Transcription Bot for FM Transmissions 4

Figure 2. Visualization of the filtered spectrogram (top) vs. the original one (bottom). 300 Hz
low cutoff and 2700 Hz high cutoff. Note the intensity difference at higher frequencies.

The bandwidth contains two variables: the low and high cutoffs. First, we test the
recognition accuracy of a clear recording (SNR > 64 dB) by adjusting two boundaries of a
4th-order Butterworth filter at 100 Hz or 200 Hz intervals, respectively, for low and high
cutoffs. Since the way the filter was implemented prohibits low-cutoff to be zero, we set it to
1 Hz instead.

We then iterate over filtered audio files to perform transcription. Punctuation is included in
VOSK output, however we chose to drop all punctuation and then format the output one
word per line. Some recognized words are replaced using sed (e.g., “nine” to “niner”), as
some words in NATO phonetic alphabets are read differently than in common English. Then
we use the command

$ diff -y --suppress-common-lines standard.txt result.txt | wc -l

to report the differences between the transcript and ground truth. Another script collects the
result and plots a 2D heatmap, as shown in Figure 3, also known as the contour map for
discrete values, to demonstrate how two variables together affect the accuracy.

120

Zhang and Callahan: Preliminary Analysis of An AI-powered Transcription Bot for FM Transmissions 5

Figure 3. Heatmap for NATO phonetic alphabet recognition accuracy with various low and
high cutoffs in Hz.

The accuracy deteriorates as the bandwidth gets narrower, in other words, towards the
bottom left of the map. For example, to yield an accuracy greater than 90%, the minimum
bandwidth needs to be greater than 1700 Hz, whereas it takes 2800 Hz on average to reach
near 100% accuracy.

Note that this does not mean that lower lower-bound and higher upper-bound are always
desirable. For certain words, we expect cutoffs to be at the appropriate location to improve
recognition. The error most likely happening in this test setup is the pair “kilo” and “kino,”
and this is fixed as the low cut-off rises, which is visualized by the bottom right corner being
darker than the top.

121

Zhang and Callahan: Preliminary Analysis of An AI-powered Transcription Bot for FM Transmissions 6

Like the previous SNR test, human perception outperforms the AI transcriber. Even at the
narrowest bandwidth (1000, 2000), it is still understandable. This is probably due to the
context that humans can understand. For example, in this NATO alphabet testing, human
operators specially trained for it will subconsciously correlate the word heard with one of 36
possibilities in the set, while to achieve the same effect, the programmer needs to specify
such information to a machine.

In the above bandwidth test and the previous SNR test, we used NATO phonetic alphabet
recording as audio input. Despite being a good starting point as it is a standard format to
exchange call signs, it is only a small portion of ham radio traffic. Furthermore, the recording
pronounces a single word at a time with extra long spacing; this speech pattern is
uncommon in real conversation. As such, we chose an excerpt from the Wikipedia page on
artificial intelligence [6], recorded by Zhemin himself in a young male voice, to test the
system's performance in a more practical situation. Below is an annotated excerpt; the
contents in parentheses were unintelligible to the bot due to their unstressed nature, and
the parts in square brackets indicate a human error made when reading. These factors are
compensated for in our accuracy calculations.

Artificial intelligence is intelligence demonstrated by machines, as opposed to a
natural intelligence displayed by animals including humans. AI research has been
defined as the field of study of intelligent agents, which refers to any system that
perceives its environment and takes actions that maximize (its) chance of achieving
its goals.

The term "artificial intelligence" had previously been used to describe machine(s)
that mimic and display "human" cognitive skills that are associated with (the) human
mind[s], such as "learning" and "problem-solving." This definition has since been
rejected by major AI researchers who now describe AI in terms of rationality and
acting rationally, which does not limit how intelligence can be articulated.

The microphone, an RØDE NT-USB Mini, was placed 40 centimeters away, with Windows
Voice Recorder running on the PC with a default sampling rate of 48000 Hz. The audio is
then noise reduced using Audacity 3.0.2 with reference to silence before talking starts. After
that, we applied the compressor with default settings to yield the reference audio for this
test. Finally, we repeat the above experiment steps to generate the result in Figure 4.

122

Zhang and Callahan: Preliminary Analysis of An AI-powered Transcription Bot for FM Transmissions 7

Figure 4. Heatmap for AI Wikipedia article recognition accuracy with various low and high
cutoffs in Hz.

As expected, the overall accuracy decreases in this test set. We believe the most plausible
explanation lies in the limited vocabularies of the model; accuracy would likely be improved
if the model could be trained on a large corpus of actual amateur radio transmissions and
conversations. The stressed and unstressed syllables and words found in natural speech
patterns are a challenge to the model. The countermeasure for the vocabularies issue is to
train the model with an even larger pool of words, although improvement will be limited
given the law of diminishing returns; the size of the model grows rapidly as words rarely
used in everyday conversation get included. To the stress and unstress issue, a
professional announcer may overcome the obscurity, but as the system targets the public,
there may be little that can be done.

123

Zhang and Callahan: Preliminary Analysis of An AI-powered Transcription Bot for FM Transmissions 8

What is unexpected, however, is that in our experiments the male voice allows a higher
low-cutoff frequency before the accuracy deteriorates compared to the female voice in the
NATO test set. Intuition suggests that the male voice in general has a lower fundamental
frequency. With a higher low-cutoff, we might expect a more severe loss of information, yet
the measurement suggests opposing evidence. One possible explanation is that the model
extracts information from the harmonics more than the fundamental frequency, but without
solid evidence, this phenomenon remains unresolved and is worth further study.

Recently, the editor-in-chief of QEX called for more rag chewing [7, 8], and we could not
agree more–as that would significantly aid in training an amateur radio-specific model to
increase the accuracy of the bot! CQ CQ CQ any audio you would like to share for
improving the accuracy of the bot.

Message Filtering
The filtering process involves multiple filters for different purposes, all cascaded together.
Each unit specialized in specific topic detections is joined by “OR” logic to assemble a
complete filter module. Figure 5 shows an example configuration and its flowchart. An
inaccurate RF analogy to this is a series of bandstop filters that reject undesirable
information. This flexible design allows more user-defined filters to be added later on.

Figure 5. A Closer Look at Filtering Mechanism

124

Zhang and Callahan: Preliminary Analysis of An AI-powered Transcription Bot for FM Transmissions 9

There may be some concerns with a filtering mechanism that an amateur operator ought to
be aware of. First is the idea of censorship. While it is of course true in the United States
that a private person has the right to determine what speech makes it out of the filter, one
operator’s peace of mind can sometimes be felt as another operator’s censorship.
Nonetheless, censorship may be an important consideration in other locations.

Additionally, different taboos exist across different cultures; what constitutes an offensive
word to one person may be a totally innocuous word to another, even within the same
language. Consider the differences in slang among American, British, and Australian
English for some notable examples. This means there will never be a one-size-fits-all filter.
The filter will always have some degree of cultural context implicit in its design and
operation. We consider this to be perfectly acceptable and perhaps even desirable, as it
helps to imagine the flexibility of the filter design overall while being able to be highly
adaptable to any situation.

Future filtering work
We have identified two important areas of further work that could be added to enhance the
power of the filtering mechanism. First, we might consider the informativeness of a
message. A message that was not sufficiently informative by any number of metrics might
be a good candidate to drop. Second, we might consider messages containing sensitive
information, such as passwords to online accounts, and it would be important to drop those
messages as well lest an operator’s secrets be divulged to the world.

Conclusion
In designing the original AI/ML transcription bot, we discovered several issues with the
accuracy of transcription that required further exploration. In this paper, we conducted a
number of experiments designed to better understand how we could refine the accuracy,
defined broadly, of the bot. Our experiments examined the effects of bandwidth on
transcription accuracy. We then experimented with filters for unintelligible and inappropriate
transmissions, designing a system that is flexible enough to deal with cultural contexts.

Future work may identify additional variables that affect transcription accuracy. Future work
may also explore concepts such as informativeness of a message in determining if it should
be posted to social media. The filter may also be extended to not post sensitive information,
such as passwords.

The continued development and experimentation of the AI/ML transcription bot
demonstrates the viability of research and experimentation at the intersection of amateur
radio and AI/ML. It is our hope that this article inspires future work by other amateur
operators in this space.

125

Zhang and Callahan: Preliminary Analysis of An AI-powered Transcription Bot for FM Transmissions 10

Works Cited
[1] Callahan, B. R., and Z. Zhang. Forthcoming. “An AI-powered transcription bot for FM
transmissions.” QEX.

[2] https://alphacephei.com/vosk/

[3] Miner, A. S, A. Haque, J. A. Fries, S. L. Fleming, D. E. Wilfley, G. T. Wilson, A. Milstein,
D. Jurafsky, B. A. Arnow, W. S. Agras, L. Fei-Fei, and N. H. Shah. 2020. “Accessing the
accuracy of automatic speech recognition for psychotherapy.” npj Digital Medicine 3, 82.

[4] Mauch, M., C. Cannam, R. Bittner, G. Fazekas, J. Salamon, J. Dai, J. Bello, and S.
Dixon. 2015. “Computer-aided Melody Note Transcription Using the Tony Software:
Accuracy and Efficiency.” Available online:
https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/7247/tony-paper_preprint.pdf

[5] § 97.113 Prohibited transmissions. Available online:
https://www.ecfr.gov/current/title-47/chapter-I/subchapter-D/part-97#97.113

[6] https://en.wikipedia.org/wiki/Artificial_intelligence

[7] Siwiak, K. 2022. “Perspectives.” QEX July/August 2022: 2.

[8] Siwiak, K. 2022. “Perspectives.” QEX September/October 2022: 2.

126

Notes

