
TAPR PSR  #121  WINTER 2013

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

President’s Corner
By Steven Bible, N7HPR, President, TAPR

At the 2012 ARRL-TAPR Digital 
Communications Conference (DCC) in 
Atlanta, Chris Testa, KD2BMH, received a lot 
of attention with his presentation of his handheld 
Software Defined Radio (SDR) transceiver. His 
low powered 144 and 440-MHz radio operates in 
a variety of digital modes, as well as AM, FM, and 
SSB.

Chris will be at Dayton for Hamvention in May 
and I have invited him to speak at the TAPR Forum.

By the way, Hamvention is May 17-19 and it is 
not too early to make your reservations. (Actually, 
it is never too early to make your reservations for 
Dayton!) 

TAPR will be at Hamvention in full-force with our 
suite of booths in the Hara Arena, our annual Forum 
Friday morning, and our joint dinner with AMSAT 
Friday evening.

Getting back to KD2BMH and his SDR HT, check 
out what he has in store for Hamvention at https://
docs.google.com/document/d/1WHknlNMDlTOderYM
bFxFyw2kLa4m0EriGmIXNd_qaPw/edit# and I think 
you will be impressed.

Behind the scenes, TAPR veep Jeremy 
McDermond, NH6Z, has unveiled a new 
membership management application that will 
handle TAPR membership applications and 
renewals in a timely manner and increase our 
membership numbers in the process.

Jeremy has also worked closely with TAPR 
Directors John Ackerman, N8UR, and John Koster, 
W9DDD, to move TAPR’s online presence to a new 
server . During the move, the server movers also 
updated its contents. Hopefully, the move has been 
transparent to the users, but if you notice anything 
out of kilter, please contact one of the gentlemen 
mentioned above and they will address the issue in a 
timely manner.

Also behind the scenes, the DCC moves west this 
year and we are currently considering a variety of 
sites on the left-hand side of the Mississippi for our 
big September get-together with the ARRL.  

73,
Steve Bible, N7HPR, President TAPR

###

President’s Corner 			   01

ARRL-TAPR 2012 DCC 			   02

Paying TAPR				    03 
 
Mammoth Cave Packet Test		  04

GNU Radio				    06

Hank Oredson, W0RLI, Silent Key		 08

Homemade WWVB “Radial LED Clock”	 09

ARRL Board of Directors’ Digital Matters	 17

Write Here! 				    18

On the Net				    18 

The Fine Print				    19

Our Membership App			   20



TAPR PSR  #121  WINTER 2013PAGE 2

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

ARRL-TAPR 2012 DCC
By Tom McDermott, N5EG
(Originally published in The Repeater, the Rogue Valley Amateur Radio Club’s newsletter)

The 2012 ARRL-TAPR Digital Communications 
Conference was held in Atlanta, GA, the weekend of 
September 21-23. I had missed the last several DCCs, 
and was glad to be able to attend this one. The last one 
attended was the one held near Portland in 2009.

Friday had a full day of technical and operations 
talks—all of which were excellent. There were some 
updates on AMSAT satellite programs. Hams apparently 
have taught satellite operators a few things:

Satellites can replace ballast on test launches. That plus 
launch insurance have eliminated pretty much all heavy-
payload ham launch opportunities.

Microsats can be quite useful, as a result ham launch 
opportunities for those are now few, far between, and 
expensive.

Steve Hicks, N5AC, VP of R&D for Flex Radio gave 
a presentation on the Flex 6000 SDR radio, and showed 
how advances in FPGA computing capability essentially 
allow placing a supercomputer in each radio. (Steve 
worked for me briefly many years ago at Collins Radio.)

Heikki Hannikainen, OH7LZB, presented the story of 
the APRS.FI servers located in Finland, and the high-
performance, high-availability European APRS central 
routers. They used surplus (but pretty recent) high-
performance servers in a data center that hosts special 
projects. Heikki showed how they rewrote parts of the 
server code to increase the performance to thousands of 
web queries per second. An extremely impressive paper 
and accomplishment. Their system also tracks airplanes 
in flight and he demonstrated a live Google Earth map 
view of commercial flights in southern Finland.

Andrew Pavlin, KA2DDO, discussed a new open-
source APRS client that he has written. It’s very modern 
and utilizes OpenStreetMaps. Bob Bruninga, WB4APR, 
(the father of APRS) was in the audience and nodded 
approvingly at all the useful features that Andrew has 
incorporated. It has a tactical message data base, GPS 
interface, NWS drawing, and several protocols. It’s 
available over the internet at: http://www.findtheater.
com/ka2ddo/YAAC.html It runs on Windows, MAC, and 
Linux. 

There were a number of toys available to play with 
in the demo room after the talks Friday, including 440-
MHz high-performance data links, several D-STAR 
demos, several SDR radios, and a couple others that I’ve 
forgotten.

Saturday had two tracks, one technical, and one 
introductory. The introductory tracks had some 
interesting sounding sessions on D-STAR, but being 
unable to be in two places at once I attended the technical 
tracks.

David Bern, W2LNX, discussed a system he assembled 
from off-the-shelf products: an Ethernet router board 
that is essentially an open-source Ethernet switch/router 
that is DD-WRT compatible with two card cages for 
radios and no built-in RF. David used plug-in radios from 
Doodle Labs and XAGYL that can be run in the 440-
MHz ham band. He achieved about 6 Megabits/sec back-
to-back, and about 2 to 4 Mb/s using Yagis over various 
clear paths of 5 to 13 miles. He demonstrated full-motion 
digital video using the radios.

Chris Testa, KD2BMH, showed a presentation of 

a self-contained handheld transceiver (same size as 
a large handie-talkie) that was completely SDR. He 
concentrated on low-power consumption so that it would 
have reasonable battery life. It operates on 144 and 440 
MHz, can be programmed for AM, SSB, FM, and various 
digital modes. Pretty slick.

Sunday morning Tom Rondeau, KB3UKZ, presented 
a four-hour seminar on GNU Radio. Tom has taken over 
development and maintenance of the GNU Radio project 
from Eric Blossom. http://gnuradio.org/redmine/projects/
gnuradio/wiki

GNU Radio is an open source (free) software program 
that runs on Linux for prototyping and building real-time 
SDRs. In the past, these applications have been custom-
written due to the very fast processing required. GNU 
Radio is a framework for doing the signal processing at 
speed on the PC (hundreds of thousands of samples per 
second or more) using drag-and-drop graphics. Many of 
the common processing blocks have already been written 
(such as filters, modulators, demodulators, Fourier 
transforms, phase locked loops, etc.). It also includes a 
data viewer that can show time, frequency, waterfall, and 
constellations.

Interfaces to the USRP radios designed by Matt Ettis 
come bundled with GNU Radio, as do interfaces to 
the FunCube and Ezcap dongles. The FunCube is a 60 
to 1700-MHz receiver on a USB stick, and the Ezcap 
is a European format DVB-T television receiver. The 
Ezcap can be programmed to bring out straight I– and 
Q– samples at 3.25 Ms/s; the radio tunes from 48 to 863 
MHz, but some can tune much farther. It’s available 



TAPR PSR  #121  WINTER 2013PAGE 3

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

for between $20 and $40 from numerous Internet vendors (including Amazon.com). 
Tom demonstrated hooking up the Ezcap dongle to his computer and on-the-fly he 
constructed a wideband FM receiver. We were able to listen to some of the FM stations 
in Atlanta from his laptop speakers using GNU Radio. Any of the DVB-T dongles that 
use the RTL2832U chipset are supposed to be compatible.

For the seminar, each attendee got a bootable and runnable DVD with Ubuntu Linux 
and GNU Radio. It does not touch the hard drive of the computer. This allowed those 
attendees with Windows-only laptops to run the software and follow along with the 
seminar examples.

After returning home, I found WUBI—a program that allows installing Ubuntu Linux 
on a Windows NTFS file system. This allows dual-booting my Windows computer 
without having to partition the hard drive. WUBI then lead to installation of Ubuntu 
with the Gnome interface. Under Ubuntu I then installed GNU Radio 3.6.2 and the 
associated tools (GNU compilers, etc.). GNU Radio installs in the traditional Linux 
fashion from source, so the computer had to fetch the required support utilities and then 
compile and build the whole package. It took about eight hours, but went flawlessly. 
This allowed duplicating all the seminar exercises on the computer at home. 

Since there is an actual application for all of this, it was desirable to learn how to 
write signal processing modules for GNU Radio. The fast-path code is written in 
C++ and uses SWIG to interface to Python. I took a quick on-line course on Python, 
but so far, it turns out it has not been needed. Fortunately I already knew C++. Some 
exploration turned up scripts and make files for creating a new GNU Radio module, 
and in a few hours I was able to generate a simple module, XML, compile and link, and 
load it into the GNU Radio environment, where it works as intended and interfaces with 
controls and sliders.

Next up is the desire to build software to interface to a ham SDR transceiver that 
Open HPSDR and TAPR kitted and manufactured this summer called Hermes (just 
arrived yesterday). But that’s the subject of another newsletter article. 

TAPR would like to host DCC in the western USA next year.
###

Paying TAPR
By John Koster, W9DDD

The TAPR website order checkout process will be changing soon.
In order to maintain PCI (http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_

Security_Standard) compliance with the minimum of continuing effort on the part of 
the staff, we will be migrating to a new payment gateway. 

The big difference is that no one on staff will ever see the credit card information. 
It will be sent directly to the payment gateway that is responsible for all the PCI 
compliance.  

The first step in the process will be for the gateway to ‘authorize’ the payment. 
In credit card industry parlance, this means the gateway will check that the card 
information is correct and funds are available. The funds will be reserved for future 
collection.

Once the office has verified the order, checked the shipping costs and determined that 
stock is ready to ship, the staff will initialize what is called “capture.” That step actually 
starts the move of funds to the TAPR bank account where it arrives in two to three 
business days.

A customer should not see much difference from the previous process other than a 
different look to the webpages in the checkout process.

In the past, the office received the order, verified it, checked the shipping costs and 
readied it for shipping. Then the staff manually charged the credit card as an ‘authorize 
and capture’ transaction. In both scenarios the shipment takes place either the same day 
or the day following collection of funds.

###



TAPR PSR  #121  WINTER 2013PAGE 4

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

Mammoth Cave Packet Test (March 2-3, 2013)
By Bob Bruninga, WB4APR

Everyone knows that VHF radios do not “work” in 
caves because they don’t work much beyond line of 
sight. But LF and MF work through reasonable distances 
of rock and have taken most of the focus of ham radio 
communications in caves. But this was all before APRS. 
We think that APRS can penetrate nearly a mile into 
a cave by using multiple APRS digipeaters up to 7 or 
even 14 hops as shown in Figure 1. The deep distance 
penetration can be multiplied if vertical links are possible 
every 14 hops. These links can be either VHF for shallow 
caves or HF for deeper penetration. KI4RDT conducted 
a test from the Mammoth Cave Hotel parking lot to the 
Discovery Tour passage and thinks that penetrations of up 
to 160 feet might be possible with 50W radios and beams.

What makes this test easy to conduct is the availability 
the last few years of the Kenwood TH-D72 HT which 
can also digipeat. This makes placement of these 14 
digipeaters as easy as walking along the cave and placing 
an HT on the rock whenever we get to the end of a link. 
We have come up with some enclosures made from PVC 
pipe shown in figure 2.

We have also come up with a clever packet PATH 
arrangement that allows us to easily gateway the multiple 
HOP7-7 packet path below ground into the topside global 
APRS network WIDE2-2 paths as shown in figure 3. 
By using the UIDIGI aliases in the KPC-3 digipeater to 
TRAP some of HOP7-N paths, we can truncate those 
from the above ground link. This way, they propagate 
normally topside into the APRS-Internet system as long 
as there is an IGATE within 1 or 2 hops on the surface.

In addition to the VHF tests we hope to also test 
some HF vertical links using FT-817 radios connected 
to KPC-3 TNC’s as shown in Figure 4. The lower the 
band the better rock penetration, but also the higher the 
atmospheric noise topside. Also, if we have to use HF, 
then each cave-end of that link needs a VHF packet radio 
as well to link into the HOP7-N network.

Fig. 1: A topside backbone can be linked using HF vertical links through a few hundred feet of rock spaced every mile.

Fig. 2: Three of the cave digipeaters (with or without tops). The HTs just drop in and out for easy adjustment.



TAPR PSR  #121  WINTER 2013PAGE 5

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

If you are a ham radio caver, or you have a TH-D72 
walkie-talkie to bring, or you have an FT-817 and KPC3 
TNC, or even a D700 in a lunch box, then please consider 
volunteering for this big Mammoth Cave Ham Radio 
Test. We have scheduled 2-3 March 2013 it to coincide 
with the nearby Cave City, KY annual Hamfest which 
also turns out to be “Volunteer Weekend” at the cave so 
that we will have plenty of official Cave support. For 
more info see the web page: http://aprs.org/cave-link.html

###



TAPR PSR  #121  WINTER 2013PAGE 6

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

GNU Radio
By Tom McDermott, N5EG
(Originally published in The Repeater, the Rogue Valley Amateur Radio Club’s newsletter)

[The following article is a follow-up to Tom’s report about the ARRL / TAPR DCC (see page 2 
In the November, RVARC newsletter, I wrote about the ARRL / TAPR DCC conference and 

the new Hermes 0.5 watt digital software defined radio (SDR). At that conference was a four-hour 
introductory seminar on GNU Radio, a free open source software program (written for Linux) that 
allows generating real-time digital signal processing on a PC without needing to write any code. It has 
pre-defined processing blocks that you can drag and drop on the screen, and wire together with a few 
mouse clicks.

GNU Radio provides interfaces to a couple pieces of real hardware, the Ettus Research USRP, and 
the DVB-T dongle (see January QST for an article about the dongle). I decided to write C++ software 
to interface the Hermes radio to GNU Radio. Going from never having seen or installed Linux, and no 
behind-the-scenes familiarity with GNU Radio, it took about 9 weeks to dig for documentation (thank 
you Google), learn Linux, how to modify cmake files for Linux, and then write and debug the C++ 
code (which is threaded, so there’s a few tricky bits) and a bit of XML.

Because all the I/O is done with the Hermes board and Ethernet, the computer does not need a sound 
card. The PowerSDR software uses the Hermes on-board audio amp to provide audio with no analog 
done anywhere in the PC. My GNU Radio implementation does use the PC audio card just to drive 
the speakers as it’s nice to listen to what is being received. I have not yet gotten around to writing the 
software that uses the Mic preamp and audio amp that are on the Hermes radio board itself.

The net result is that the Hermes radio, which communicates with the PC using a 100M or a 1 
Gigabit Ethernet connection can now be wired up to other software processing blocks just like any 
other GNU Radio block. 

The first thing to do was build a SSB demonstration transceiver. It is based on the phasing approach. 
In analog circuitry, it can be difficult to make and adjust phasing networks for good amplitude and 
phase balance, but it’s a piece of cake in software. The filters that produce the 90-degree phase shifts 
are drop-in blocks called a Hilbert transform, which acts just like a filter, but with some unusual 
symmetry in the taps.

The demo provides two independent receivers, adjustable filter widths, independent transmit 
frequency control and is full-duplex (now that’s unusual in an HF radio!). The basic receiver demo 
took a couple hours to prototype in GNU Radio and have running. The hardest part of the receiver is 
the AGC, since in the phasing receiver, it is all done at audio. The default blocks in GNU Radio were 
used, but the AGC performance leaves a bit to be desired. Chatting with some of the authors of the 

commonly available SDR software, they spent a lot of work to get good AGC.
One of the things GNU Radio can do is to display signals in various ways—spectrum, waterfall, 

time domain, and constellation domain. Building a simple spectrum scope is almost no effort, just two 
or three blocks. The first time this was done, I set it to look at the AM broadcast band. The receiver has 
a maximum sampling rate of 192 KHz, so the widest spectrum that can be seen at any instant in time is 
192 KHz (because the radio provides I and Q samples, the spectral width is the same as the sampling 
rate). It was immediately apparent that some of the AM stations in the Rogue Valley are transmitting 
digital HD signals on their AM carriers, the digital modulation is very readily apparent.

Another simple configuration was to build a setup for measuring the carrier frequency of WWV. The 

Figure 1: 5 MHz WWV baseband spectrum—span width is 20 Hertz



TAPR PSR  #121  WINTER 2013PAGE 7

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

Hermes radio has an input to lock itself to a 10-MHz reference, and I connected an HP Z3801A GPS 
disciplined oscillator to it.

The audio I and Q samples are sent to the left and right channel of the speaker producing binaural 
audio—a slightly strange sounding audio, but quite listenable.

The same samples were sent to a 10-Hz low-pass filter (providing a passband from negative 10 
Hz to positive 10 Hz around the carrier, a total of 20 Hz width) and then to one of the GNU Radio 
instruments. The test run collected many samples and performed a FFT (Fast Fourier Transform) of 
4096 complex samples to look at the frequency domain from the time domain samples. The carrier of 
WWV was readily apparent. Sixteen different FFTs were averaged to look at the frequency closely. It 
was possible to isolate the carrier to a resolution of about 0.005 Hz.

Figure 2: 5 MHz WWV baseband spectrum—span width is 2 Hertz
In an evening run, there was about –0.14 Hz of Doppler shift on the carrier due to the ionosphere 

drifting upwards. During a daytime run, the ionosphere was more stable and the frequency was within 
about 0.02 Hertz. The deterministic frequency error of the Hermes radio is roughly 0.01 Hz at 5 MHz 
(the accuracy changes with frequency due to roundoff error in the digital frequency generators within 
the radio), but that error can be precomputed and compensated for.

The three experiments were extremely fast to setup, run, and collect and analyze data. Here are some 
screenshots of the WWV spectrum obtained and the simple configuration required for the setup.

The peak of the spectrum is about –0.05 Hertz. There is some error due to the radio itself, and 
some due to ionosphere Doppler shift. This is just the tip of the iceberg for what could be done with 
Gnuradio.

If you want to learn DSP without writing code, this is a good and a free way to do it.
###

Figure 3. Test set-up



TAPR PSR  #121  WINTER 2013PAGE 8

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

Packet Pioneer, Hank Oredson, W0RLI, Silent Key
By Stana Horzepa, WA1LOU

The Xerox 820-I was a computer, introduced around 1980 that used a Zilog Z80 central 
processing unit (CPU) and ran the CP/M operating system. It featured 64 kbytes of RAM, two 
8-bit parallel ports, two serial ports, a disk controller and an 80-column by 24-line video display, 
all on a single printed-circuit board. 

   In the early 1980s, Xerox discontinued selling the “820” and sold off the remainder that they 
had on hand as surplus. Their warehouse in Texas was the source for the surplus computer and 
they could be had for as little as $50 per board! 

   Hank Oredson, W0RLI, obtained an 820 and wrote a software package for it that permitted it 
to function as a packet bulletin board system (PBBS) and more. Besides the normal functions that 
you would expect to find in any BBS, such as the ability to send and receive messages and files, 
Hank added two features that made his BBS even more powerful.

   One feature took advantage of the two serial ports provided by the 820. With a TNC 
connected to each port, Hank’s software permitted a user connected to the TNC on one port 
to communicate through the TNC connected on the other port. Assuming that each TNC was 
connected to radio equipment operating on different frequencies, this system provided a gateway 
from one frequency to the other. For example, if the TNC on one port was connected to a 2-meter 
transceiver and the TNC on the other port was connected to an HF transceiver, a PBBS user on 2 
meters could use the gateway to make packet-radio connections on HF. 

   Another feature created a rudimentary packet-radio network for the automatic forwarding of 
messages between PBBSs. This mail-forwarding function allows PBBS users to send mail to the 
users of other PBBSs.

The W0RLI PBBS revolutionized ham radio and made packet radio the most popular mode 
of its day. Hank’s PBBS begat other PBBSs and other networking schemes that so popularized 
packet radio that a TNC became as ubiquitous as a key or microphone in the ham shack. 

I became a regular correspondent with Hank pestering him with endless questions as I 
researched packet radio articles, chapters, and books that the ARRL published during the heyday 
of packet radio. Hank never tired of my questions and patiently answered each one in a friendly 
and often humorous manner. 

Hank Oredson, W0RLI, became a silent key on January 6 after a long battle with lymphoma. He 
will be missed, but his ham radio legacy lives on.

###

Hank Oredson, W0RLI nee WN0RLI, circa 1954, received the Dayton 
Hamvention Technical Excellence Award in 1987.



TAPR PSR  #121  WINTER 2013PAGE 9

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

Homemade WWVB “Radial LED Clock”
By Will Beals, N0XGA

A Long, Long Time Ago
Many years ago, as a kid somewhere in the late ‘70s, I saw my first Radial LED clock. 

It consisted of two concentric rings of LEDs, an outer ring of sixty LEDs (one for each 
minute/second) and an inner ring of 48 LEDs corresponding to each quarter hour. It was 
pretty simple. The outer ring lit two LEDs, one for the current minute and one for the 
current second. The inner ring lit an LED for the approximate hour. The entire clock 
was about 18 inches on a side. It had an optional feature that lit the outer ring in a full 
circle each second (1/60th of a second per LED) too, that livened things up a bit. For 
reasons I can’t explain, it was something I really enjoyed watching.

A Not-So-Long Time Ago
Fast forward almost as many years, I started traveling to Europe on a fairly regular 

basis for business and in a few airports and hotels, I started seeing similar clocks again, 
this time with the same outer ring of LEDs showing progressive seconds, but this time 
with the time and date using a 5x7 LED matrix inside the ring. Remembering the clock 
as a kid, I decided that was a clock I had to have. Alas, they are very hard clocks to 
find. Many internet searches later, I could only find a few home brew clocks, a bunch 
of “propeller clocks” (also very cool, but completely different) and only a couple very 
expensive commercial clocks. If there is ever a formula for a homemade project, this 
was it, a strong desire for something extremely unusual that you can’t just go get for a 
reasonable price!

Choosing the Design Tools
At the time I was working on the TAPR T238+ weather station project. I wanted 

to finish it first before starting another project. I needed to wait about a year before 
beginning. With the OK from my wife, I started around January 2006. I started with the 
printed circuit design. Fresh off the T238 project, I stuck with the same tools, Circad’s 
CC98 design capture program. The free version had the full schematic editor and layout 
support. All it could not do was crate the actual files to send to the board shop, called 
Gerber files. John (W9DDD) knew about my project and volunteered to create them for 
me.

Choosing the Microcontroller
The first decision was what microcontroller or MCU to use. The same MCU as the 

T238, the Freescale MC68HC908GP32 was an easy pick, it had about the right amount 
of horsepower, was cheap, and well-understood. I was also looking for an excuse to use 
the relatively new eZ80 from Zilog. I have always had a weakness for the Z80 since 
my TRS-80. It was the first processor I programmed extensively, including assembly 
language programming. It was serious overkill for this project, but an MCU I really 
wanted to play with. The development kit I had acquired included a full C development 
environment, something I really wished I had for the 6808. To this either/or question 
I finally picked YES. It turned out there was enough unused space to accommodate 
footprints for both.

A Short Diversion
Before I get into too much detail on the clock design, it would be handy to look at 

a YouTube video of the clock running. For this a picture is truly worth a thousand 
words. A video of a clock isn’t exactly riveting content, but will certainly help with 
understanding what is being described next. A link to the video is in the references at 
the end of the article.

The LEDs
I initially chose two concentric rings for the clock hands. An outer ring of 60 LEDs 

to show seconds and minutes, and an inner row of 48 LEDs to show quarter hours, 
the same as the clocks I had seen earlier. After staring at this a while, I realized that 
it was going to be hard to tell very accurately where the “hands” were pointing, so I 
added a third ring of LEDs in between to show the hour tick marks, giving an easy-
to-see reference for the other two rings. Centered inside the ring I wanted an LED 
matrix large enough to show the full time and date (month/day). This meant two rows 
of five characters each. I planned on a 5x7 matrix for the individual characters, but 
wanted “full graphics” capabilities, so added an extra row/column of LEDs between the 
characters so I could smoothly scroll around the screen. This gave me a matrix that was 
30 columns by 16 rows. Between the matrix and the clock hands I had 600 LEDs!

LED Placement
I was planning on this being a physically big clock. I wanted it readable from a long 

distance, so wanted it at least 12 inches in diameter. I found some good-sized pre-made 
5x8 LED modules which when assembled gave me characters that were 2.5 inches tall. 
By the time I put my three concentric rings around the center matrix I had an outer 



TAPR PSR  #121  WINTER 2013PAGE 10

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

ring that was 14 inches in diameter. A bit bigger than expected, but it looked about 
right. Placing the LEDs required some interesting planning. I created a spreadsheet to 
create the X,Y coordinates of each LED location in the boards coordinates starting with 
distance/angle, converting to X,Y around the center point, then finally the offset to the 
bottom left of the board. My target placement resolution was 0.025”. After placing all 
of the LEDs, I was able to extract the LED locations from the layout program and plunk 
them back into the spreadsheet as a check. One LED was off by 0.025”, not bad! 

The LED Matrix
Before putting down any traces, the layout of the LED matrix needed a lot of thought. 

For both the 68HC08 and eZ80 I was going to be relying on software for the display 
refresh, so needed to ensure that the method of getting the bits out of the MCU to drive 
the matrix was as efficient as possible. I also wanted the representation of the LED 
matrix in memory to be something easy to manipulate in software for my drawing 
routines. 

For the LED matrix I wanted to convert X/Y coordinates to a pixel location using 
nothing but shifts and adds, drawing ASCII characters to be nothing but shifts and ORs, 
and scrolling to be nothing but shifts as well. For this to work, I needed the mapping of 
bits to LEDs to be something like this:

This mapping made the three LSBs of the pixel column the bit number and the byte 
address the column number/8 plus row *4. This ensured the drawing routines would be 
quite efficient.

I also spent a lot of time not only looking at the best way to implement the physical 
matrix, but also actually writing the display matrix drivers in enough detail to make 
sure I didn’t have to do any unnecessary bit manipulations in software. At the most 

basic level, I needed to ensure that when writing data out the shift registers, it was a 
byte at a time, not a bit. With that and some very creative column numbering you see in 
the schematics, I was able to support the above logical matrix and still load all 64 bits 
of the shift register with 8 regular byte writes.

Duty cycle of the LEDs was another big factor. A 1/16th duty cycle would have been 
the logical choice, but would have sacrificed brightness, so I chose a 1/8th duty cycle. 
I ended up with an 8x80 matrix, two 8x30 matrices for the two rows of characters, and 
two 8x8 matrices for the minutes and hours plus tick marks. The matrix had a few gaps 
so each group started on an x8 boundary to simplify software drawing. 

Display Drivers
The smart thing to do here would have been to pick a fully integrated LED matrix 

driver chip. They take care of all matrix and LED current management operations. 
However, they are set up more for “set and forget” displays. You load them up through 
a serial interface and let them manage the display. Since I wanted to have LEDs 
turning on and off up to 60 times a second, I was worried that serial communications 
jitter would result in a display with update jitters. Uncertain of what this would look 
like, I chose the safer “CPU drives the display matrix directly” approach. I chose 
a 1ms refresh rate where I would cycle through one row (80 LEDs) every 1ms in 
sequence, with any given row on for 1ms and off for 7ms. For the row drivers I chose 
10 TPIC6C596 8-bit drivers. I have used chips like this before and they are simple, 
powerful, and convenient. They are essentially 8-bit shift registers with high power 
drivers and good enable/reset controls.

A hazard with a software-driven display refresh is that any variations in timing can 
result in display brightness variations since any timing jitter would leave a row of 
LEDs on for a longer or shorter time. It may have been overkill, but I did not want 
any software dependencies that could affect brightness. The solution was to have 
one control signal in charge of turning on and off all the drivers and have that signal 
under the direct control of a hardware timer. The timer firing also generates a software 
interrupt. The timer would immediately (and accurately) turn off the display, and 
software would then load up the new row data with some variability. After loading up 
the new row of data, the software would set another timer to precisely turn the LEDs 
back on. That way the turn-off and turn-on times would be crystal-accurate timing even 



TAPR PSR  #121  WINTER 2013PAGE 11

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

though the software to reload data would have all sorts of minor variations depending 
on interrupt times, some data variability, etc. I may not have needed this level of 
precision, but it was a known safe implementation.

Power
This was the first project where I really had to worry about and calculate power 

consumption. I wanted to maximize brightness, so looked at the maximum current I 
could drive though each LED. Assuming a 1/8th duty cycle, that turned out to be about 
80ma. For driving 80 LEDs at a time, that was a peak current of almost 6.5A. The worst 
case power for the current limit resistors for each column turned out to be just over ¼ 
watt, so I used ½ watt resistors. The display runs from a 5V supply, giving a worst-case 
peak power of 32W. By my standards, this was a lot of power. The 80 column drivers 
weren’t being stressed as they were only driving one LED at a time. 

For the row driver, however, it was the full 6.5A worst case. From a power supply 
perspective, this could be 100% duty cycle, but for a given driver, no more than 1/8th 
duty cycle. I was going to need a big power supply and it was going to need to be 
inside the clock, not an external wall wart! I knew this was serious worst-case design as 
having all 600 LEDs on all the time was not going to be typical.

The row drivers were a lot harder since each driver had to source enough current to 
source 6.5A. For that I needed to consult an expert at my work place. Again I had the 
choice of a highly integrated driver or a discrete solution using ordinary parts. I also 
relearned that in the world of MOSFETS, sourcing current is a lot harder than sinking 
it. I chose the more discrete solution. Instead of a ready-to-go solution, my work buddy 
gave me the basic circuit and a freeware analog circuit simulator called SWCAD III 
from Linear Technology to simulate it and tweak as needed. This was actually quite 
fun to play with. A unique challenge for this driver was that it ran from a +5V power 
supply, but hand to accept control signals from either MCU. The HC08 had 5V CMOS 
control signals, but the eZ80 had 3.3V IO. I wanted the drivers to work with either 
control signal without needing any changes when changing between the two. One or the 
other wasn’t too bad, supporting both was more involved.

One area where I didn’t have the clear guidance I had hoped for was trace width. I 
was hoping for something simple like “for 6.5A using 1oz copper, you need a trace x 
mils wide”. No such luck. The guidance was less clear. It was simply “for a trace x mils 

wide using 1oz copper, you get this many ohms per inch, go figure out if that is good 
or bad for your application”. Without clear guidance I just picked the widest traces I 
practically could for the row drivers and made sure the resistance was much lower than 
the current limit resistors so as not to be a factor.

No Smoke
The general rule on LED matrix displays is that if you are driving them with a low 

duty cycle like 1/8th, you can drive the LEDs with a lot more current than if you were 
to just turn the LED on 100%. For the LEDs I was looking at, the max steady-state 
current was 15-ish ma, but with a 1/8th duty cycle, I could drive 80ma. Very good for 
maximizing brightness, but if I had a software bug that stopped refreshing the matrix 
I’d be driving 80ma to one row 100% of the time. I have learned the hard way that 
overdriven LEDs have a rather exciting habit of exploding and wanted to avoid that. 
The solution was a sort-of display watchdog. I had a single signal that enabled the 
display column drivers. It was enabled for most of the 1ms period, then turned off while 
I shifted in new data, then back on again. I ran that signal through a 74HCT123 so that 
as long as the enable time was less than about 1.5ms, it was constantly retriggering. 
If the enable time exceeded that 1.5ms, the timer fired and disabled the driver. I really 
wanted to use an LM555 timer, but could not figure out how to do it with just one chip, 
the ‘123 was a single-chip solution.

Schematics odds and Ends
Only a few design issues remained. The debug interfaces for the HC08 and the eZ80 

were copies from either the T238 design or the eZ80. While I was confident I could use 
the HC08’s internal flash for storing variables on the T238 project I wasn’t so sure for 
the eZ80, so I added support for an external NVM. Finally, I added the connector for 
the external WWVB radio. This was a bit more theoretical than it should have been, just 
power, ground, and signal. That turned out to be a problem later.

The Layout
By my standards, this was going to be a huge board, just over 14 inches on a side. I 

knew it was going to be expensive too. More than two layers would have been much 
more. Any unfixable errors would not only result in a scrapped board, but likely most of 
the components loaded would have to be scrapped too, so accuracy was a high priority. 
Most of the schematic capture and layout work was accomplished during another series 



TAPR PSR  #121  WINTER 2013PAGE 12

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

of international business trips where I had a lot of time sitting in airport terminals and 
on cramped tourist class seats. It was a case of going very slowly and carefully and 
triple-checking everything. While the LED matrixes looked very nice on the schematic 
sheets, implementing them in a circle took several tries before coming together in a nice 
orderly fashion. The Circad software is an excellent tool for checking your routing and 
making sure you do things right. Hooking up the 5x8 LED modules turned out to be a 
lot more random-looking than I had hoped. Fortunately, I had a lot of space under the 
modules to do this. One thing I suspect I would never pass would be an EMI test. I had 
this big board with traces everywhere switching high currents and very little ground 
plane. It was a 2-layer board, so with some very careful routing I was able to have a 
pretty solid ground under the MCUs and drivers, the very nature of a matrix for the 
LEDs required both layers for traces. 

Ordering and Getting Boards
Since boards were the major expense, I went ahead and ordered all of the components 

first, partly to make sure the symbols I had looked right, but mostly to make sure I 
didn’t have an ugly surprise with a component unavailable after I had already made 
boards.

I finally ran out of things to check and ordered a pair of boards in February 2007. I 
got the Gerbers, checked them twice, and finally sent them to a fab house here in the 
Denver area. I did what negotiating I could, but they were still expensive, $260 for 
just two boards. When the call came in the boards were ready, I remember it being 
a particularly nasty snowstorm. It was a Friday afternoon and if I didn’t pick up the 
boards that day, I would not be able to work on them over the weekend. The ride was 
exciting, especially for my subcompact car in snowdrifts. No other cars were on the 
streets in the industrial area the fab house was in, I am pretty sure for good reasons. It is 
one thing to be designing a board for almost a year looking at it on a screen, but still a 
surprise to see it as a real board for the first time. I did try explaining what it was to the 
people at the fab house, but don’t think I was successful.

Uh-Oh!
Despite lots of checking, there were still a few problems I discovered while loading 

up the board. The first was that I used too small of a footprint for the ½ watt current 
limiting resistors. I had 80 of them, so this was a big deal. Very sharp bends for the 

leads sort of solved the length issue, but for the width issue had them stacked up 
in groups of eight right next to each other. The resistors were too wide, so I had to 
alternate resistors that were touching the board and ones that were raised above the 
board. The second issue was that I got the pin assignment wrong for the reset switch. 
That hurt as there was no easy way to make it look nice. That was the worst of it, so no 
scrap!

Initial Bring-Up
I decided to start with the more known MCU, the 6808. I loaded just enough power 

circuitry for the MCU and the “anti-smoke” logic. I wrote up some basic code to 
service a 1ms hardware timer tick and from that tick, generate the sequence of eight 
row drivers and the code to generate the enable/disable control line that is checked with 
the 74HCT123. I then stopped the MCU using the debugger and make sure the enable 
line still went to disable even if the MCU hit a breakpoint with its control line set to 
enable. It looked good. With that logic confirmed I loaded up all of the row and column 
drivers along with just one of the 5x8 LED matrix modules. That was enough logic and 
lights to debug the basics of my LED refresh code. That worked OK, so I finally loaded 
everything up. Soldering that many LEDs, current-limit resistors, and row/column 
drivers took the better part of a full day!

Finally getting the whole board loaded and seeing all the LED test patterns lighting 
up as they should was nice to see. I had some concerns about the 6.5A row drivers, 
but they worked fine, just as the simulations had promised. This was a good testimony 
to their accuracy. The other fun thing to do was the worst-case power test, lighting 
up all 600 LEDs all the time. It was an evening test, and LEDs are very efficient in 
terms of lumens per watt - 32 watts of red LED power really lit up the room! I fired up 
the test, and every few minutes checked the temperature of the various critical power 
components, things got warm, but nothing got uncomfortably hot to the touch. This 
test was done with the board fully exposed, not in a confined case. This implies I was 
probably way too conservative in my power and temperature deratings.

6808 Coding Challenges
The two biggest challenges for programming the 6808 were limited RAM space and 

CPU speed. I used the same CPU as the T238, an MC68CH908GP32. It has 32Kbytes 
of flash which was more than enough, but only 512 bytes of RAM. Of that 512, only 



TAPR PSR  #121  WINTER 2013PAGE 13

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

192 bytes were directly accessible by fast instructions. The rest required indirect access 
which is a lot slower. The display memory clearly needed to be in this fast area of 
memory. Ideally I wanted two copies of the display memory, one copy to draw in and 
another copy for what was being actively displayed. That way you can avoid seeing 
strange artifacts when drawing to a “live” display. That wasn’t practical, however. Each 
copy would be 80 bytes and I still needed RAM for variables and such. From the T238 
project, I reused my boot loader program, which also provided a convenient set of 
routines for using the 6080s flash memory for variable storage. There wasn’t much to 
store, just the offset from GMT to the local time.

The other big challenge was CPU speed. To keep the display from visibly flickering, 
I needed a refresh rate greater than 30Hz. All eight rows needed refreshing every 30Hz, 
meaning a maximum of 4ms per row. I opted for a 1ms refresh rate with the idea that 
if that was too fast for the CPU, I could slow it down a little, but not much. With a 
CPU clock speed of 8MHz that gave me 8000 clocks or about 1600 instructions per 
refresh cycle. Making matters worse though was that if I was going to run the MCU in 
debug mode (most of the time during development), the CPU frequency was reduced 
to 2.4576 MHz, giving me less than 500 instructions per interrupt! You know you are 
pushing things when you are counting instructions! With the planning I had done earlier 
on how to efficiently drive the display logic, the code to do it did end up being fairly 
efficient, on the order of 10% of the 1 ms cycle time.

I still needed to ensure that I would not get any unintentional flickering when drawing 
to the display memory. The method I chose was to actually perform the drawing 
functions as part of the display refresh interrupts. This was particularly important for 
the “sub-seconds” hand. This was a “hand” that rotated once a second in order to make 
the display a bit more lively. For this to look smooth, I had to ensure that one LED was 
turned on for exactly 1/60th of a second. If I missed by even a little bit, the display 
would look like it was jittering and an LED would look either brighter or dimmer 
depending. By doing the “drawing” inside the display refresh routine I could precisely 
control how long each LED was lit.

By extension it made sense to perform all of the drawing functions inside the interrupt 
routines. In general this worked OK, but I did run into a problem when I was updating 
the entire display for something like an hour roll. The problem was that the amount 
of time it was taking to completely redraw the LED matrix for a time update was 

taking longer than the 1ms display refresh time. In particular, it was the necessary bit 
manipulations to redraw 10 characters worth of 5x8 matrix data. There weren’t enough 
CPU cycles in debug mode to complete the drawing before the next interrupt. Since 
I was still in the interrupt routine, the interrupt was being missed. The display was 
flickering and even though I couldn’t measure it, time wasn’t being tracked accurately 
either. My solution was to very carefully make the timer interrupt re-entrant. This 
is something not normally done with small microcontrollers. After performing the 
timing critical display refresh functions and if I was about to jump into the LED matrix 
drawing functions, I re-enabled interrupts. This allowed the drawing routines to be 
further interrupted by the display refresh interrupt. Upon completing that interrupt, the 
CPU returned to the display drawing. I was a little worried this would result in some 
visible drawing artifacts, but it did not. I knew by design it was not possible to have two 
back-back LED matrix drawing commands, so this was a fairly safe solution.

Timer Task State Machine
Besides the very time critical chore of running the display refresh, there were a lot of 

other tasks that needed attention. None needed attention every millisecond though, so 
I created a state machine to handle the other important, but not so frequent tasks. It is 
basically a sequencer that goes through 50 states and then starts over. These other tasks 
included realtime keeping, time “drawing”, button scanning, WWVB signal decoding, 
and in the case of the eZ80, a transition engine. The idea behind the state machine is 
to take many of the other tasks that need attention on a regular basis and space them 
out over these 50 states so that you can ensure each task get the attention it needs, but 
that the tasks would not happen at exactly the same time. One place I cheated a bit was 
that 1/60th of a second counter. Its period is 16.666 ms, but I had a resolution of 1 ms. 
My solution was to increase the 60ths of second count slightly unevenly, doing so in 
the sequence 17 ms, 17 ms, 16 ms. I was worried this might not look consistent when 
flashing 1/60th of a second, but could not tell the difference.

Getting Started with the eZ80
With the 6808 the challenge was getting the features and performance I needed with 

the very limited resources of an MCU I was very familiar with. With the eZ80, the 
challenge was much more about (re-)learning a new CPU. Most of the code for this 
MCU was going to be in C. Zilog offered a very affordable design kit that included an 



TAPR PSR  #121  WINTER 2013PAGE 14

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

eZ80 development board, full C compiler, debugger, and IDE for a very reasonable 
$100. Even though it was my first CPU to program in any language including assembly, 
it had been many (25+) years since I had last done any Z80 programming. The basic 
register set looked familiar and while the Zilog folk made sure that the eZ80 still ran 
old Z80 assembly code, they made massive updates to the instruction set to extend the 
arithmetic and addressing functions to be 24 bits instead of 8/16. The changes are all 
for the better. I am still not sure I was using the new modes to their fullest, but it was 
enough to get me going. Bandwidth was certainly not an issue, the eZ80 CPU clock was 
50 MHz and while the CPU isn’t the classic RISC “1 instruction per clock”, it was a 
whole lot better than the old Z80s 5-12 clocks per instruction. 

eZ80 Coding
Since I already had a debugged and working clock using the 6808, the eZ80 

programming was mainly taking the 6808 routines one at a time and rewriting those 
assembly language routines in C for the eZ80. I stuck to the same basic software 
architecture. My goal was to do everything in C unless there was a compelling 
reason to drop to assembly. Since CPU bandwidth wasn’t an issue, I could have done 
everything in C, but I still like efficient code. This was my first time doing embedded C 
programming, so with the help of the eZ80 C compilers assembly language source code 
output, I spent a lot of time looking at what kind of assembly language it generated 
for specific C coding practices. I had never done this before and it was extremely 
educational. For pretty much every routine I wrote it in C, I looked at the assembly 
language output. The results were often surprising, but after learning to “think like 
a compiler”, I started getting better at writing C code that created efficient assembly 
code. With this knowledge, much of the code improvements were simply by rewriting 
the C code in a manner better suited for the compiler instead of dropping to assembly 
language. The biggest lesson is that while in assembly it is easy to deal with 8, 16, (and 
in the case of the eZ80 24)-bit integers, in C it is best to stick with whatever the native 
integer format is no matter what size you actually need. For the eZ80, that is 24-bit. The 
reason is that in order to not run into unexpected truncation issues, almost all math is 
performed at the native integer size and if your operands and/or result are anything but 
that native size, extra instructions are added to convert operands to 24 bit and results 
from 24 bit. This isn’t unique to the eZ80 either; in my programming experience on 
other CPUs since, this has turned out to be common. 

Another big C issue is that it does not handle shifting that well. You can shift single 
bytes/words, but cannot efficiently shift multibyte arrays of bits. There is no way in C 
to get to the assembly language “shift-through-carry” instructions that are designed for 
this kind of operation. For a lot of the bitmap operations where shifting was needed, I 
did drop into assembly language. 

Overall, I was very pleasantly surprised at how much of the clock code was handled 
quite efficiently in C.

eZ80 Enhancements
With a much more powerful processor and more memory, there were a few extra 

things I wanted to do with the eZ80 that were not practical with the 6808. The big one 
was a transition engine. This involved first drawing out your new image in a staging 
buffer, then calling this engine to copy the image in the staging buffer to the “live” 
buffer. This decouples the drawing functions from being time critical and then give 
you lots of flexibility in how you copy the new image to the live buffer. At the simple 
level it is just a block copy, but I got fancy and did wipes, scrolls and shifts from any 
direction. The 6808 certainly didn’t have the memory for two buffers and probably 
didn’t have the horsepower either. This turned out to be a lot of code, but was fun to 
write and certainly added some flair. 

The WWVB Radio
I am very much a fan of WWVB timepieces. I have had an “atomic watch” for over a 

decade and any clock where I have had a choice in the matter has been WWVB-capable 
too. I’m big on accurate time and having a precise timepiece suits me just fine. So, 
naturally, if I am going to make a clock, it had better be WWVB-capable. My online 
research at the time for a standalone WWVB radios was very disappointing. I could 
find nothing consumer grade, just a few commercial radios that were crazy expensive. 
I finally decided to be creative and just go buy a couple cheap $10 WWVB wall clocks 
hoping I could find the radio guts and “borrow” the WWVB signal. It turned out to be 
more of an adventure than I expected.

My first surprise after getting two clocks was that there were no standard packaged 
chips in the clocks with nice convenient part numbers printed on them. Instead, the 
clocks were built using chip-on-board methods where the die is put on the board and 
then just a dollop of glue is put over the top. No markings! I started with some very 



TAPR PSR  #121  WINTER 2013PAGE 15

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

wide Google searches for WWVB radio chips and with a little luck came across some 
chip datasheets where it was pretty obvious the chip was mostly sold as bare die. That 
seemed to be a good lead. Of the three anonymous blobs of goo, the one with the 
radio chip was easy to identify, it had the antenna hooked up to it! I got out my trusty 
oscilloscope again and started probing all of the signals around that chip. I had a match! 
The match had two surprises though. The first was that the radio chip required an 
enable signal. I could not just leave the radio permanently enabled as the chip used the 
transition from disabled to enabled to set some AGC levels. This required some wires 
be added to the board. The second surprise took me a bit to figure out. I could see the 
digital WWVB signal with my oscilloscope just fine, but as soon as I hooked it up to 
my MCU, the signal died. I thought it might be power quality, interference from the 
clocks display logic, bad logic levels for the enable signal, but nothing fixed it. After 
much head-scratching I wondered if it was output impedance and a more careful review 
of the datasheet showed this was likely the case. That is a specification I normally do 
not pay much attention to. At this point I didn’t want to pay a fortune to mail order a 
single 10-cent part, so my plan B was to find a way to make whatever I could find at 
Radio Shack work. All they had that fit the bill was an LM339 quad comparator. With 
a little fiddling I got it breadboarded up and it provided the necessary high impedance 
load to the radio and low impedance drive to the MCUs. The only last detail was the 
radio chip was designed for a single 1.5V battery and I had MCUs that had either 5V 
(6808) or 3.3V (eZ80) IO. Dividing down the MCU control signals was easy and now 
that I had a comparator for the WWVB signal, getting the output amplified to 3.3V was 
pretty easy too. I had control and I had a signal to decode!

Decoding the WWVB Signal
This was fun. I decided to just start with the WWVB specification and design 

something from scratch. I suspect I could have found some software to do this, but 
wanted to do it on my own. The NIST website has some very informative documents 
on not only how the signal is formatted, but a lot of advice on how best to decode the 
signal as well.

As with the rest of the clock, I started with the 6808 assembly, then migrated to the 
eZ80. I already had my 1ms display timer tick, so used a 1/50th divisor of that as my 
signal sampling clock. I took those samples and ran it through a “best of three” filter to 
handle any simple signal glitches. Then, based on the three official pulse lengths, had a 

symbol decoder state machine report symbols as they were timed. This symbol decoder 
state machine would essentially report one symbol (or an error if the pulse length 
wasn’t valid) per second from the WWVB signal.

I then constructed another state machine to do the actual data gathering. It simply 
waited for two Position Markers in a row (how WWVB identifies the start of the minute 
as well as start of the data sequence) and then started gathering symbols as the symbol 
decoder reported them. Besides the pair of markers that signify the start of a minute, 
there are also markers within the minute. If I ever got an invalid symbol or a marker 
in the wrong place or no marker where one should be, I restarted the data gathering 
process.

This very simple data gathering process with limited data integrity checking is not 
very robust. The noise filtering could be much more sophisticated and even the WWVB 
best practices documentation strongly suggests getting two complete sets of time data 
and making sure they are exactly 1 minute different as a data integrity check. I live in 
Colorado about 60 miles from the Fort Collins WWVB transmitter. I get fantastic signal 
quality 24/7. If this clock ever had to work outside Colorado, this code would need 
considerably more work.

Debugging the WWVB decoding process presented its own challenges. It was well 
and good to see that I could correctly decode the present time (I had 6+ other atomic 
clocks and watches to compare against), but there were a big number of special cases 
that I had to check out like time rolls, going in and out of Daylight Saving Time, leap 
years, leap seconds and other such special cases. What about acquiring on the day 
of a DST transition, for example? For this I created two spreadsheets, one where I 
could plunk in the raw data I received and see that it was the right time and a second 
spreadsheet where I could enter a desired time and condition and it would give me the 
desired string of symbols that represented that time. I then plunked that data into my 
program as if it had come from the symbol decoder state machine. If you look at the 
source code, I have a whole array of these test cases for validation purposes.

Two WWVB Time Formats
One of the more interesting discoveries while working on the WWVB decoder was 

the transmission supports two different ways of dealing with the pesky issue of the 
world not quite rotating in exactly 24.00000000 hours. The transmission provides a 



TAPR PSR  #121  WINTER 2013PAGE 16

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

1/16th of a second correction value as well as data for the more famous leap second. 
This is something pretty safe to ignore, but it looked like something fun to play with. 
By coincidence, the December 2008 leap second was announced as I was wrapping up 
the leap second support code, so I had a deadline! I was able to finish it in time and had 
the clock perform some special antics when a leap second happens. There have been 
two leap seconds since and they are always fun to watch.

Things To Do Someday
There are two things I would still like to do some day (besides better WWVB signal 

processing). The first is clock calibration. That is, looking at how far off your local time 
is every time you resync to WWVB to see how far off frequency your local crystal is. 
Knowing that, you can then make adjustments during the day so that the time is really 
accurate. For the eZ80 board I sync up to WWVB at midnight and by late evening, 
I can be off as much as 15 seconds. This would be a big deal if I didn’t resync every 
night. I don’t have a WWVB receiver hooked up to my 6808 clock, but by luck, the 
crystal for that clock is extremely accurate. We seem to go about 6-12 months between 
power failures at work and it has never been off more than 10 seconds between those 
power failures. 

Second, I would really like an excuse to play with the eZ80’s Ethernet support. My 
original intent was to have it get time from a network time source, but since have seen 
one article in Circuit Cellar, Ink where someone had a project with a WWVB decoder 
but then uses that to become a network time server. This would be a pretty big effort 
as in order to support Ethernet traffic I would have to use a Zilog-supplied RTOS. 
That would mean messing up the very carefully crafted display refresh timing logic, 
something I am hesitant to disturb.

Third, I really should try to put the clocks in a case. As any of the T238 kit builders 
know, I punted on case making for that project too. I am not good at it and when I do 
try, they end up looking pretty bad. I have ideas on a nice looking case, but don’t have 
the ability to make it. So, for now they are still naked printed circuit boards just as you 
see it on the YouTube video. I do have a 120VAC power supply on the back, so not the 
greatest from a safety perspective!

Conclusion
There is a certain fear in doing a project you have thought about and wanted to do 

for several decades. Will it live up to your expectations? This clock wasn’t a rational 
project in that it wasn’t doing anything that couldn’t be done with a bought clock one 
tenth the price. It just looks cool and was a kind of clock I wanted since being a pre-
teen. In hindsight, I believe a lot of the conservative design choices both for power 
and CPU timing were overkill and it could have been simpler and cheaper, but I’m 
not a believer in chasing hindsight. I can even rationalize the lack of a case adds to the 
tech look. I have one clock in my home office and one in my work office, one running 
the 6808 and one the eZ80. I never tire of looking at them and enjoy the queries from 
people visiting my office and seeing the clock for the first time. The clock certainly did 
live up to my expectations!

References
Circad CC98: http://www.holophase.com/ This is the schematic capture and layout 

program I used for the design. Like any program of this type, it does take a bit to get 
up to speed, but it does everything you need including symbol creation. The only thing 
the free download does not do is output Gerber files. The nice part is that if you know 
someone with the paid version, then you can share files. This is a great setup for a club 
or small organization.

Freescale MC68HC908GP32: http://www.freescale.com/ (Search for 
mc68hc908gp32) A very nice general purpose 8-bit microcontroller. 

eZ80: http://www.zilog.com Full part number is the eZ80F91, letters after that are 
packaging options. For the modest cost of a development kit you get everything you 
need, a motherboard with a removable module you can then plug into your project, a 
full (and very nice) C development environment complete with in-circuit debugging 
capabilities and plenty of libraries and example code. As nice a development 
environment as I have ever played with.

SWCAD III http://www.linear.com/designtools/software/. The original software 
I used has now been replaced with LTspice IV. Spice is a general purpose analog 
simulation tool and this is Linear Technologies free version of that software. You get 
to enter in your schematics, and they have models of not only their power devices but 
good models of many generic devices as well. With this software I was able to simulate 
and tweak the power driver circuitry for this board to make sure it would work with 
the specifics of my particular constraints. With a working simulation, the relatively 



TAPR PSR  #121  WINTER 2013PAGE 17

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

complex drivers worked the first time without any issues or tweaks needed.
WWVB radio chip: http://www.mas-oy.com/products/radio-controlled-clock-rcc/

mas6180/. If the chip in the cheap clocks I bought were not this chip, they were 
effectively clones of it. Everything I noted/measured lined up with the specifications of 
this chip specification.

WWVB signal specs and best practices: http://www.nist.gov/pml/div688/grp40/
radioclocks.cfm Good description of what you are supposed to do if you are making a 
WWVB-controlled clock. The spec at the top of the page was my reference for what to 
do. Very good reading if you are thinking of anything WWVB-related.

YouTube video of the clock: http://www.youtube.com/watch?v=16RcBb6JFmc
Design files: http://www.beals5.com/clock. Schematics, silkscreen, and source code 

for your viewing enjoyment. If interested in the Gerber files, let me know.
###

ARRL Board of Directors’ 
Digital Matters

From the minutes of the ARRL Board of Directors Annual Meeting, January 18-
19,2013:

38. On motion of Dr. Woolweaver, seconded by Mr. Bodson, the following resolution 
was ADOPTED: 

Whereas, the symbol rate limitations found in the FCC’s rules governing the Amateur 
Radio Service were codified in 1989, and 

Whereas, advances in digital communications techniques have rendered these 
limitations obsolete, and Minutes,  

Whereas, the continuation and extension of the amateur’s proven ability to contribute 
to the advancement of the radio art is a fundamental purpose of the Amateur Radio 
Service; 

Now therefore be it resolved, the ARRL Board of Directors establishes an Ad Hoc 
Symbol Rate Rule Modernization Committee (the Committee), and 

Be it further resolved, that the Committee shall evaluate potential modifications to the 
Amateur Service rules to permit and facilitate the use and development of high symbol 
rate digital communications techniques, and 

Be it further resolved, that the Committee shall recommend modifications to the 
ARRL Board of Directors for consideration at the Board’s July 2013 meeting.

###



TAPR PSR  #121  WINTER 2013PAGE 18

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

On the Net
By Mark Thompson, WB9QZB

Facebook
As you may know, TAPR has a Facebook page,  

www.facebook.com/TAPRDigitalHam.
However, recently I also created a TAPR Facebook Group, 

www.facebook.com/groups/TAPRDigital/.
If you have a Facebook account, “Like” the TAPR Facebook page and 

join the TAPR Facebook Group.
If you join the group click on the Events link and indicate you’re Going 

to the events.

On Twitter, Too
Access the TAPR Twitter account at www.twitter.com/

taprdigital.

Also on YouTube
TAPR now has its own channel on YouTube: the 

TAPR Digital Videos Channel: www.youtube.com/
user/TAPRDigitalVideo.

At this time, there are over 30 videos on our channel including many 
from the TAPR-ARRL Digital Communications Conference (DCC) that 
you may view at no cost, so have at it!

###

Write Here!

PSR is looking for a few good writers, particularly ham radio operators working on 
the digital side of our hobby, who would like to write about their activities here.

You don’t have to be Hiram Percy Maxim to contribute to PSR and you don’t have to 
use Microsoft Word to compose your thoughts. 

The PSR editorial staff can handle just about any text and graphic format, so don’t be 
afraid to submit whatever you have to wa1lou@tapr.org. The deadline for the next issue 
of PSR is April 15, so write early and write often.

If PSR publishes your contribution, you will receive an extension to your TAPR 
membership or if you are not a member, you will receive a TAPR membership.

###



TAPR PSR  #121  WINTER 2013PAGE 19

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.

PAGE 19

Submission Guidelines
TAPR is always interested in receiving information and articles for publication. If 
you have an idea for an article you would like to see, or you or someone you know is 
doing something that would interest TAPR, please contact the editor (wa1lou@tapr.
org) so that your work can be shared with the Amateur Radio community. If you feel 
uncomfortable or otherwise unable to write an article yourself, please contact the editor 
for assistance. Preferred format for articles is plain ASCII text (OpenOffice or Microsoft 
Word is acceptable). Preferred graphic formats are PS/EPS/TIFF (diagrams, black and 
white photographs), or TIFF/JPEG/GIF (color photographs). Please submit graphics at 
a minimum of 300 DPI. 

Production / Distribution 
PSR is exported as Adobe Acrobat and distributed electronically at www.tapr.org
PSR Editor:
Stana Horzepa, WA1LOU
E-mail wa1lou@tapr.org

PSR
#121 Winter 2013, ISSN: 1052–3626
Published by
TAPR
Phone 972–671–TAPR (8277)
E-mail taproffice@tapr.org
URL www.tapr.org
Facebook www.facebook.com/TAPRDigitalHam
Twitter www.twitter.com/taprdigital
TAPR Office Hours: Monday to Friday, 9 am to 5 pm Central Time

TAPR Officers 
President: Steve Bible, N7HPR, n7hpr@tapr.org 
Vice President: Jeremy McDermond, NH6Z, mcdermj@xenotropic.com 
Secretary: Stana Horzepa, WA1LOU, wa1lou@tapr.org  
Treasurer: Tom Holmes, N8ZM, n8zm@tapr.org

TAPR Board of Directors
Board Member, Call Sign, Term Expires, e-mail address 
John Ackermann, N8UR, 2013, n8ur@tapr.org 
Steve Bible, N7HPR, 2014, n7hpr@tapr.org 
Dan Babcock, N4XWE, 2013, n4xwe@tapr.org  
George Byrkit, K9TRV, 2015, k9trv@tapr.org 
Tom Holmes, N8ZM, 2015, n8zm@tapr.org  
Stana Horzepa, WA1LOU, 2014, wa1lou@tapr.org 
John Koster, W9DDD, 2015 w9ddd@tapr.org 
Jeremy McDermond, NH6Z, 2013, mcdermj@xenotropic.com 
Darryl Smith, VK2TDS, 2014, vk2tds@tapr.org 
 
TAPR is a not–for–profit scientific research and development corporation [Section 
501(c)(3) of the US tax code]. Contributions are deductible to the extent allowed by US 
tax laws. TAPR is chartered in the State of Arizona for the purpose of designing and 
developing new systems for digital radio communication in the Amateur Radio Service, 
and for disseminating information required, during, and obtained from such research.

PSR Advertising Rates 
Full Page Ad for 1 issue: $100, 4 issues: $350 
Half Page Ad for 1 issue: $75, 4 issues: $250 
Quarter Page Ad for 1 issue: $50, 4 issues: $175

TAPR is a community that provides leadership and resources to radio amateurs for the purpose of advancing the radio art.



Benefits of a TAPR Membership:
 	 n	 Subscription to the quarterly PSR
	 n	 10% off most TAPR kits and publications
	 n	 Access to the TAPR digital library
	 n	 Latest information on TAPR R&D projects 
	 n	 Co-sponsor of the annual TAPR-ARRL Digital Communications Conference (DCC) 

TAPR is a community that provides leadership and resources 
to radio amateurs for the purpose of advancing the radio art.

Membership Application 
TAPR
P. O. Box 852754, Richardson, TX 75085–2754

Phone 972–671–TAPR (8277), Monday–Friday, 9AM–5PM Central Time

E–mail taproffice@tapr.org    URL http://www.tapr.org

Join online at http://www.tapr.org/organization.html#membership

Name__________________________________________ Call Sign_______________________
 
Address______________________________________________________________________

City_____________________________State/Province_________Postal Code_____________

Country_________________________ Daytime Phone No.____________________________

E-mail Address_________________________________________________________________

New - $25   c      Renewal - $25   c  

Payment Method: 	Check c   Money Order c   Credit Card c 

STOP! Provide the following information only if paying by mail with a credit card:

	 VISA c 	 Mastercard c		 Discover c 		  JCB c

	 Credit Card No. ________________________ Expiration Date_______________Security Code_______

	 Card Holder’s Name_________________________________________________	


